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The flow in a liquid plug moving in an annular pipe is analytically solved. The interaction with the
two concentric walls of the annular pipe results in two toroidal vortexes within the concentric plug.
Focus is put on long plugs with aspect ratio β > 2, which have vortex circulation flow rates and
volume ratio independent of the plug length. Based on the analytical results, correlations are derived
for the circulation flow rates of the plug and each vortex and for the volume ratio of the two vortexes.
Correlations are also developed for evaluating the radial transport of the plug flow. The friction factor
for concentric plugs is a function of the aspect ratio and the radius ratio. For very long plugs with
β � 1, the friction factor approaches that of the fully developed continuous flow in the annular
pipe. Published by AIP Publishing. https://doi.org/10.1063/1.5050258

NOMENCLATURE

An coefficient
Bn coefficient
Cn coefficient
Dh hydraulic diameter
Dn coefficient
f Darcy friction factor
F viscous drag force
g gravitational acceleration rate
gn Fourier coefficient
I1 first order of the first-kind modified Bessel function
I2 second order of the first-kind modified Bessel function
K1 first order of the second-kind modified Bessel function
K2 second order of the second-kind modified Bessel

function
l plug length
p pressure
Q′ radial flux
Q̂′i non-dimensional radial flux of inner vortex
Q̂′o non-dimensional radial flux of outer vortex
r r-axis in the cylindrical coordinate system
ri inner radius of the plug
ro outer radius of the plug
r̂c radial location of the border between the inner and outer

vortexes
R radial location of the pipe wall
uz velocity in the z-direction
ur velocity in the r-direction
û non-dimensional velocity vector
U velocity of the plug moving in the pipe
V̂i non-dimensional volume of the inner vortex
V̂o non-dimensional volume of the outer vortex
z z-axis in the cylindrical coordinate system

Symbol
ˆ non-dimensional

a)Author to whom correspondence should be addressed: sunny.li@ubc.ca

Greek symbols
αn eigenvalue
β aspect ratio
η radius ratio (or non-dimensional inner radius)
µ dynamic viscosity
ρ density
σ surface tension coefficient
τ circulation period
ψ stream function
ψ̂o maximum of the non-dimensional stream function

(outer circulation rate)
ψ̂i minimum of the non-dimensional stream function���ψ̂i

��� inner circulation rate

Non-dimensional group parameters
Re Reynolds number based on ro

ReDh Reynolds number based on the hydraulic diameter

I. INTRODUCTION

With the rapid development of microelectronics, microre-
actors, and micro-electro-mechanical systems (MEMS), the
scale of these devices shrinks dramatically, and microfluidics
has drawn much attention in recent years.1 Among all kinds of
microfluidics, the hydrodynamics of plug flows is of interest
due to their applications in environmental detection,2 chemical
reaction,3–5 digital flow, and drug delivery.6 Comparing to con-
tinuous flows, the most significant feature of plug flows is the
internal circulation,7,8 which can enhance transport processes
such as mass and heat transfers.9–13

Generally, there are two categories of plug flows. One
category is the liquid-liquid plug flow,14–17 while the other
category is the gas-liquid plug flow.13,18,19 Most previous stud-
ies in the latter category put focus on liquid plugs. Gas-liquid
plug flows are common unless more than one liquid flows are
required in some specific applications, which then form liquid-
liquid plug flows. The present study belongs to the category
of gas-liquid plug flows, and the following discussion will be
on gas-liquid plug flows only.
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Gas-liquid plug flows have been studied experimentally
and theoretically. On the experimental side, gas-liquid plug
flows have been investigated using non-intrusive methods
such as fluorescence and micro PIV (particle imaging
velocimetry),18,19 and most of the experimental work was
restricted to straight and slit channels. On the theoretical side,
an analytical approach based on the Stokes flow was taken to
solve the gas-liquid flow in a 2-D domain.20 The flow field
is constructed by solving a 4th-order PDE (partial differen-
tial equation). This method has been proved effective and
convenient for plug flows in channels with different shapes,
such as 2-D slit channels,20 curved channels,21 and circular
channels.22

Despite varied cross section shapes, channels that have
been used for plug flows are single-walled in that the cross
section of the channel is one closed curve. However, the annu-
lar channel is different as it has two separate walls. Annular
channels are commonly seen in many applications, and one
major application is the concentric tube (tube-in-tube) heat
exchanger.23–29 There has been much attention to annular
flows. Studies have been conducted to investigate one liquid
flow30,31 or two flows32–36 in annular channels. For plug flows
in annular channels, very limited work has been reported. The
present work is dedicated to the gas-liquid plug flow in annu-
lar pipes. The focus is put on the flow phenomena inside a
single liquid plug moving in an annular space confined by two
concentric walls. The objective here is not only to analytically
solve the flow problem but also to investigate the circulation
flow, vortex, pressure drop, and friction.

II. ANALYTICAL SOLUTIONS

Figure 1 schematically shows a liquid plug with a length l
moving at a constant velocity U in an annular pipe, which has
an inner radius ri and an outer radius ro. The fluid properties
of the plug that might be relevant to the current study include
the density ρ, the dynamic viscosity µ, and the surface tension
σ. We drop the surface tension by making the following three
assumptions:

(1) The capillary number µU/σ � 1;
(2) If the annulus is placed horizontally, the Bond num-

ber ρg(ro − ri)2/σ � 1, where g is the gravitational
acceleration rate. If the annulus is placed vertically,
ρg(ro − ri)l/σ � 1.

FIG. 1. Schematic of a liquid plug moving in an annular pipe. In the floor-
attached frame reference that is not shown, the plug velocity is U.

(3) Both the receding and advancing contact angles are close
to 90◦.

Due to the above assumptions, the moving plug maintains an
axisymmetric shape with the leading and trailing ends being
flat. Excluding σ, there remain six parameters, which, accord-
ing to the Buckingham π theorem, can be represented by three
non-dimensional parameters. Here we choose the outer radius
ro as the characteristic length and define three independent
non-dimensional parameters, which are

η =
ri

ro
, l̂ =

l
ro

, Re =
ρUro

µ
. (1)

Here η is called the radius ratio or the non-dimensional inner
radius.

Following the normalization scheme in Eq. (1), we define

ẑ ≡
z
ro

; r̂ ≡
r
ro

; ûz ≡
uz

U
; ûr ≡

ur

U
. (2)

For convenience, the frame of reference is attached to the plug,
and the cylindrical coordinate system is chosen, as shown in
Fig. 1. The z-axis in the plug-attached frame of reference is
set in the direction of the plug moving in the floor-attached
frame of reference. The space occupied by the plug is defined
by 0 ≤ ẑ ≤ l̂ and η ≤ r̂ ≤ 1. The remaining spaces, ẑ ≤ 0 and
ẑ ≥ l̂, are filled with gas.

The general momentum equation for the plug at the steady
state is given by (

û · ∇̂
)
û = −∇̂p̂ +

1
Re
∇̂2û, (3)

where û is in the vectorial form. The non-dimensional pressure
is p̂ = p/ρU2. The body force term is not considered due to
the assumption that the Froude number U/

√
g(ro − ri) � 1

for the horizontally placed annular pipe or U/
√

gl � 1 for the
vertically placed annular pipe.

In the plug-attached frame of reference, non-slip bound-
ary conditions at the plug-wall interfaces appear as a local
velocity of −U. Hence, the boundary conditions are

ûz(ẑ, 1) = ûz(ẑ, η) = −1. (4)

The pipe walls are smooth and impermeable, which requires

ûr(ẑ, 1) = ûr(ẑ, η) = 0. (5)

The two ends of the plug are flat and have no mass transfer
such as evaporation or condensation. Hence, we can write

ûz(0, r̂) = ûz

(
l̂, r̂

)
= 0. (6)

At ẑ = 0 and ẑ = l̂, the liquid plug is in contact with the gas
fluid. If the gas viscosity is lower than the viscosity of the
liquid by orders of magnitude, we may assume the gas flow to
be inviscid and write

∂ûr

∂ẑ

�����ẑ=0
=
∂ûr

∂ẑ

�����ẑ=l̂
= 0. (7)

The liquid plug is considered incompressible, and the stream
function for this axisymmetric flow is

ûz =
1
r̂
∂ψ̂

∂r̂
; ûr = −

1
r̂
∂ψ̂

∂ẑ
. (8)
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The non-dimensional stream function ψ̂ and the dimensional
stream function ψ are related by

ψ̂ ≡
ψ

r2
oU

. (9)

Regarding the liquid plug, we further assume that the fric-
tion term in Eq. (3) is dominant over the inertia term. To satisfy
the assumption, it requires

12

1 − η
�

1
Re

1

(1 − η)2
, (10)

which gives
Re(1 − η) � 1. (11)

With Eq. (11) being satisfied, Eq. (3) reduces to the Stokes
equation given by

∇̂p̂ =
1

Re
∇̂2û. (12)

By taking curl of Eq. (12) and substituting Eq. (8) into
Eq. (12), we have a 4th-order PDE of the stream function,
which is

L̂4
−1ψ̂ =

(
∂2

∂ẑ2
+
∂2

∂r̂2
−

1
r̂
∂

∂r̂

) (
∂2

∂ẑ2
+
∂2

∂r̂2
−

1
r̂
∂

∂r̂

)
ψ̂ = 0.

(13)
For this 4th-order differential equation, two boundary condi-
tions can be obtained from Eq. (4), which are

1
r̂
∂ψ̂

∂r̂

�����r̂=η
=

1
r̂
∂ψ̂

∂r̂

�����r̂=1
= −1. (14)

Equations (5) and (6) indicate that all the boundary
streamlines have a constant stream function value, which, for
convenience, is written as

ψ̂(ẑ, η) = ψ̂(ẑ, 1) = 0 (15)

and
ψ̂(0, r̂) = ψ̂

(
l̂, r̂

)
= 0. (16)

Equation (7) provides another two boundary conditions, which
are

∂2ψ̂

∂ẑ2

�����ẑ=0
=
∂2ψ̂

∂ẑ2

�����ẑ=l̂
= 0. (17)

To solve Eq. (13), we consider the Fourier series of the
stream function. In view of the boundary conditions at ẑ = 0
and ẑ = l̂ defined by Eqs. (16) and (17), the stream function
can be written in the Fourier series with only sines involved,
which is

ψ̂ =

∞∑
n=1

ψ̂n =

∞∑
n=1

gn sin

(
nπ

l̂
ẑ

)
. (18)

The Fourier coefficients gn are given by

gn =
2

l̂

l̂∫
0

ψ̂ sin

(
nπ

l̂
ẑ

)
dẑ = gn(r̂), (19)

which is a function of r̂ only.
Substituting Eq. (18) into Eq. (12) gives(

d2

dr̂2
−

1
r̂

d
dr̂
− α2

n

) (
d2

dr̂2
−

1
r̂

d
dr̂
− α2

n

)
gn = 0, (20)

where αn = nπ/l̂ is the eigenvalue. Four boundary conditions
are needed for solving Eq. (20). Two boundary conditions can
be derived from Eq. (14), which are

dgn

dr̂

�����r̂=η
=

dgn

dr̂

�����r̂=1
= −

2η

l̂αn

[
1 − (−1)n] . (21)

Another two boundary conditions are from Eq. (15), which are

gn(η) = gn(1) = 0. (22)

The solution of Eq. (20) is

gn = Anr̂2I2(αnr̂) + Bnr̂I1(αnr̂) + Cnr̂2K2(αnr̂) + Dnr̂K1(αnr̂).
(23)

Here I1 and I2 are the first and second order of the first-kind
modified Bessel functions, respectively. And K1 and K2 are
the first and second order of the second-kind modified Bessel
functions, respectively. Equation (23) can also be written based
on the zeroth and first-order functions.37 The coefficients, An,
Bn, Cn, and Dn, should be determined by applying the four
boundary conditions given by Eqs. (21) and (22). This can be
performed by solving

*.....
,

ηI2(αnη) I1(αnη) ηK2(αnη) K1(αnη)

I2(αn) I1(αn) K2(αn) K1(αn)

ηI1(αnη) I0(αnη) −ηK1(αnη) −K0(αnη)

I1(αn) I0(αn) −K1(αn) −K0(αn)

+/////
-

*.....
,

An

Bn

Cn

Dn

+/////
-

=

*......
,

0

0

−
2η
l̂αn

[
1 − (−1)n]

−
2η
l̂αn

[
1 − (−1)n]

+//////
-

, (24)

where Cramer’s rule has been used. Clearly, An, Bn, Cn, and
Dn are zero if n is even.

Finally, the analytical solution of the stream function is

ψ̂(ẑ, r̂) =
∞∑

n=1,3,5....

[Anr̂2I2(αnr̂) + Bnr̂I1(αnr̂) + Cnr̂2K2(αnr̂)

+ Dnr̂K1(αnr̂)]sin(αnẑ). (25)

Substituting Eq. (25) into Eq. (8) gives the velocity solutions,
which are

ûz(ẑ, r̂) =
∞∑

n=1,3,5...

αn[Anr̂I1(αnr̂) + BnI0(αnr̂) − Cnr̂K1(αnr̂)

−DnK0(αnr̂)]sin(αnẑ), (26)

ûr(ẑ, r̂) =
∞∑

n=1,3,5...

−αn[Anr̂I2(αnr̂) + BnI1(αnr̂) + Cnr̂K2(αnr̂)

+ DnK1(αnr̂)]cos(αnẑ). (27)

The pressure solution can be obtained by applying Eqs. (26)
and (27) to Eq. (12) with the given pressure boundary con-
ditions and the Reynolds number Re. The pressure drop and
friction factor will be discussed in Sec. V.
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III. CIRCULATION AND VORTEXES

The stream function given by Eq. (25) is plotted in Fig. 2
for three plugs, which have varied values of η and l̂. Two
toroidal vortexes are formed inside the plug: the one close to
the outer wall is called the outer vortex, and the one close to
the inner wall is called the inner vortex. The inner vortex is
smaller than the outer vortex. As η increases, the difference
diminishes. The two vortexes are in contact at r̂ = r̂c, where
the streamline ψ̂ = 0. The outer vortex is located at r̂ > r̂c,
where ψ̂ > 0. The maximum of ψ̂ is denoted by ψ̂o, which is
the non-dimensional circulation flow rate of the outer vortex,
in short called the outer circulation rate. It should be noted
that the dimensional outer circulation rate ψo = ψ̂or2

oU2
0 is the

volume flow rate per unit radian of the polar angle. The inner
vortex is located at r̂ < r̂c, where ψ̂ < 0. The minimum of ψ̂ is
denoted by ψ̂i, and the circulation flow rate of the inner vortex
is ���ψ̂i

���, in short called the inner circulation rate.

The range of the stream function, ψ̂o − ψ̂i, is the circu-
lation flow rate of the entire plug, in short called the plug
circulation rate. Figure 3(a) shows that the plug circulation
rate increases with the length l̂ when l̂ is small and eventu-
ally becomes independent of l̂. The inner radius η shows more
effect on the circulation flow rate. As η increases from 0 to 1,
the flow rate reduces toward zero. The two vortexes are com-
pared using ���ψ̂i/ψ̂o

���, which is plotted in Fig. 3(b). The ratio

decreases with increasing l̂ for short plugs, and it becomes

independent of l̂ for long plugs. When η is small, the plug
circulation is dominated by the outer vortex. As η increases,
the difference of the circulation rate between the two vortexes
decreases.

The two vortexes border at r̂ = r̂c, which can be
determined from the volume ratio of the two vortexes using

V̂i

V̂o
=

r̂2
c − η

2

1 − r̂2
c

, (28)

where V̂i and V̂o are the non-dimensional volumes of the inner
vortex and outer vortex, respectively, which have been normal-
ized by the volume of the plug. The volume ratio is plotted in
Fig. 4, which shows that the inner vortex is always smaller than
the outer vortex. For short plugs, the volume ratio decreases
with increasing l̂, while for long plugs, the volume ratio is
independent of l̂.

Figures 3 and 4 show that the circulation rates and the vol-
ume ratios are dependent on l̂ for short plugs but independent
of l̂ for long plugs. However, the ranges of l̂ for the short and
long plugs vary with η. To determine the short and long plugs,
we introduce

β =
l

ro − ri
=

l̂
1 − η

, (29)

which is called the aspect ratio. In Fig. 5, the plug circulation
rate is plotted versus the aspect ratio. As shown by the inset
in Fig. 5,

(
ψ̂o − ψ̂i

)
max

is the circulation rate of long plugs,

which is independent of l̂. Figure 5 shows that, regardless of

FIG. 2. Streamlines of three plugs: (a)
η = 0.1, l̂ = 2.7; (b) η = 0.5, l̂ = 1.5;
and (c) η = 0.9, l̂ = 0.3. In the floor-
attached frame of reference, the plugs
are moving from left to right.
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FIG. 3. (a) Plug circulation rate and (b) circulation rate ratio of the inner
vortex to the outer vortex.

FIG. 4. Volume ratio of the inner vortex to the outer vortex.

η, ψ̂o− ψ̂i is within less than 1% difference from
(
ψ̂o − ψ̂i

)
max

for β > 2. Similar trends can be observed if the data of the
circulation rate ratio in Fig. 3(b) and the data of volume ratio
in Fig. 4 are plotted against β. Hence, plugs with aspect ratio
β > 2 are considered as long plugs.

FIG. 5. Plug circulation rate is independent of l̂ for β > 2. Here data points
are plotted as lines instead of scattered symbols. The data presented in Fig. 3
are included.

IV. CIRCULATION IN LONG PLUGS (β > 2)

The analysis in this section will focus on long plugs, which
have relatively large aspect ratios, i.e., β > 2. To focus on long
plugs is mainly because the assumption of flat-ended plugs
is reasonable only for long plugs. As shown above, the cir-
culation flow rates and the volume ratio of the two vortexes
are dependent on η only. Correlations will be derived in this
section.

Equation (25) is applied to long plugs with varied inner
radii η and lengths l̂. The inner radius η is varied between 0 and
1, while l̂ is changed accordingly to ensure β > 2. The maxima
and minima of the stream function ψ̂ are determined to obtain
the circulation flow rates of the outer vortex, the inner vortex,
and the plug, which are ψ̂o, ���ψ̂i

���, and ψ̂o − ψ̂i, respectively. The
three circulation rates are plotted in Fig. 6. The plug circulation

FIG. 6. Plug circulation rate, inner circulation rate, and outer circulation rate
of long plugs (β > 2). Scattered symbols are the data from Eq. (25). Solid
lines are plotted using derived correlation equations as indicated.
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FIG. 7. Circulation rate ratio and volume ratio of long plugs (β > 2). Scat-
tered symbols are data obtained from Eq. (25). Solid lines are curve-fitting
lines corresponding to the equations as indicated.

decreases as η increases. If η = 1 (i.e., ri = ro), the flow rate
is zero as there is no flow area. The inner circulation is zero
if η = 0. The relationship of the three circulation rates with η
will be derived later.

The two vortexes in long plugs are compared in Fig. 7,
where the circulation flow rate ratio ���ψ̂i/ψ̂o

��� and the volume

ratio V̂i/V̂o are plotted against η. The volume ratio of the two
vortexes shows a linear relationship with the radius ratio of the
plug, which is

Vi

Vo
= η. (30)

Combining Eqs. (28) and (30) gives the border location of the
two vortexes, which is

r̂c = η
0.5. (31)

Similarly, Fig. 7 shows that the circulation rate ratio of the two
vortexes changes with η following

�����
ψ̂i

ψ̂o

�����
= η1.16. (32)

To further analyze the plug circulation, we introduce the
circulation period, denoted by τ, during which the circulated
volume of fluid is equal to the plug volume. For convenience,
we use τ−1, called the circulation frequency. The definition of
the circulation frequency is

τ−1 =
2π

(
ψ̂o − ψ̂i

)
r2

oU

π
(
r2

o − r2
i

)
l

. (33)

Applying rearrangement gives the circulation frequency in its
non-dimensional form, which is

τ̂−1 =

(
τU
ro

)−1

=
2
(
ψ̂o − ψ̂i

)
(
1 − η2) l̂

. (34)

The non-dimensional circulation frequency is plotted
against the length l̂ in Fig. 8. Applying curve fitting gives

τ̂−1 = 0.1973l̂−1. (35)

FIG. 8. Circulation frequency of long plugs (β > 2). Scattered data points
with varied η and l̂ are obtained from Eqs. (25) and (34). Curve fitting results
in Eq. (35).

Equation (35) shows that the frequency is inversely propor-
tional to the plug length and that the frequency is independent
of the inner radius η.

Combining Eqs. (34) and (35) gives the correlation for the
plug circulation rate of long plugs, which is

ψ̂o − ψ̂i = 0.0986
(
1 − η2

)
. (36)

Combining Eq. (36) and Eq. (32), we obtain the correlation
for the outer circulation rate of long plugs, which is

ψ̂o =
0.0986

(
1 − η2

)
1 + η1.16

. (37)

And the correlation for the inner circulation rate of long plugs
is

���ψ̂i
��� =

0.0986
(
1 − η2

)
η1.16

1 + η1.16
. (38)

Equations (36)–(38) are plotted in Fig. 6. For the inner vor-
tex, Eq. (38) shows good agreement with the data points. For
the outer vortex, Eq. (37) agrees well with the data points
except for plugs with small inner radius, η <∼ 0.2. As a result,
Eq. (36) predicts the plug circulation rate with good accuracy
except for small inner radii.

The major difference between the plug flow and the con-
tinuous flow in an annular pipe is the circulation flow inside
the plug. The circulation results in transport in the radial direc-
tion, which does not exist in the fully developed continuous
flow. The radial transport can be characterized by

Q′ =

(
ψ̂o − ψ̂i

)
r2

oU

l/2
, (39)

which is the plug circulation rate divided by half plug length.
Here Q′ is a volumetric flow rate per unit radian of the
polar angle and per unit length and is called the radial flux.
We further non-dimensionalize Eq. (39) and substitute Eq. (36)
into Eq. (39) and get

Q̂′ =
Q′

roU
=

2
(
ψ̂o − ψ̂i

)
l̂

= 0.1973l̂−1
(
1 − η2

)
. (40)
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Equation (40) shows that the radial flux decreases with
increasing the plug length and/or increasing the inner radius.

Similar to Eq. (40), the radial flux of the inner vortex can
be evaluated using

Q̂′i =
2���ψ̂i

���
l̂
=

0.1973
(
1 − η2

)
η1.16(

1 + η1.16) l̂
. (41)

The radial flux of the outer vortex can be evaluated using

Q̂′o =
2ψ̂o

l̂
=

0.1973
(
1 − η2

)
(
1 + η1.16) l̂

. (42)

Equations (40)–(42) are useful for studying transport processes
such as heat transfer of the plug flow.

V. FRICTION FACTOR

Here we will focus on the viscous friction of the liquid
plug and derive the friction factor for concentric plugs. The
viscous drag force on a plug moving in an annular pipe is

F = −2πµ

[
R
∫ l

0

(
∂uz

∂r

)
r=R

dz

] �����

R=ro

R=ri

. (43)

Here R is the radial location of the pipe wall. The minus sign on
the left indicates that the force is opposite to the plug motion
and in the negative z direction (see Fig. 1). Applying force
balance to the plug, the pressure drop in the z direction across
the plug is

∆p̂ =
∆p

ρU2
=

F

π
(
r2

o − r2
i

)
ρU2

= −
2

Re
(
1 − η2) 

R̂
∫ l̂

0

(
∂ûz

∂r̂

)
r̂=R̂

dẑ


������

R̂=1

R̂=η

. (44)

The hydraulic diameter of the plug is Dh = 2(ro − ri), and
the Reynolds number based on the hydraulic diameter is

ReDh =
ρUDh

µ
= 2(1 − η) Re, (45)

where the other Reynolds number defined in Eq. (1) has been
used. The Darcy friction factor is defined as

f =
−(∆p/l)Dh

ρU2/2
= −4

∆p̂
β

, (46)

where the definition of the aspect ratio, Eq. (29), has been used.
Substituting Eq. (44) into Eq. (46) gives

f ReDh =
32

β(1 + η)

∞∑
n=1,3,5...

αn [AnR̂2I0

(
αnR̂

)
+ BnR̂I1

(
αnR̂

)
+ CnR̂2K0

(
αnR̂

)
+ DnR̂K1

(
αnR̂

)
]���

R̂=1

R̂=η
. (47)

Equation (47) is applied to plugs with varied values of
aspect ratio β and radius ratio η, and the results are plot-
ted in Fig. 9. Generally, f ReDh decreases with increasing β
and increases with increasing η. As β becomes big, f ReDh

approaches a steady value specific for a given η.

FIG. 9. Friction factor of plugs with varied aspect ratios and radius ratios.

If a plug is very long, i.e., β → ∞, the flow approaches
a continuous annulus flow. The solution for a fully developed
continuous flow in an annular pipe38 is

ûz =
2
(
1 − r̂2

)
ln η − 2

(
1 − η2

)
ln r̂(

1 − η2) +
(
1 + η2) ln η

− 1. (48)

In a similar fashion to Eqs. (43)–(47), the friction factor for
the continuous annulus flow is

f ReDh =
64(1 − η)2 ln η(

1 − η2) +
(
1 + η2) ln η

. (49)

As shown in Fig. 9, Eq. (49) agrees with the steady values of
f ReDh for long plugs.

To further compare the friction factor of plug flows with
continuous flows, Eq. (47) is plotted versus the radius ratio for
long plugs (β = 10 and 100) in comparison with Eq. (49), as
shown in Fig. 10. Plugs with β = 100 behave like continuous
flows as their friction factor values match well with those of the
continuous flows. Both Eq. (47) and Eq. (49) also match with
other laminar flows in tubes with different cross sections.39

FIG. 10. Friction factors of long plugs in comparison with those of continuous
annulus flows with varied radius ratios.



093605-8 Y. Cao and R. Li Phys. Fluids 30, 093605 (2018)

Figure 10 shows that as η → 0, f ReDh approaches 64, which
is for the circular pipe flow. As η → 1, f ReDh approaches 96,
which is for the flow between two parallel plates.

From the results shown in Figs. 9 and 10, it can be con-
cluded that the flow in a very long plug is the same as the
continuous flow. In a continuous annulus flow, if we move in
the flow direction at a speed equal to the mean flow veloc-
ity, we should be able to observe streamlines similar to those
shown in Fig. 2, but the observed streamlines are all horizontal
and parallel and are infinite in the z direction.

VI. SUMMARY

The Stokes equation is solved for a liquid plug moving
in an annular pipe. By plotting the stream function solution,
we observe two toroidal vortexes due to the friction on the
two concentric walls. It is found that the circulation flow rates
and the volume ratio of the two vortexes change with the plug
length for short plugs and become independent of the plug
length for long plugs. It is found that plugs can be considered
long if its aspect ratio is larger than 2.

Focus is put on long plugs. The circulation rate ratio and
the volume ratio of the two vortexes show simple relationships
with respect to the inner radius. The circulation frequency is
found to be independent of the inner radius. Based on the
curve fitting equations, correlations for plug, inner, and outer
circulation rates are derived. Furthermore, the radial flux is
introduced and its correlations are developed for evaluating the
radial transport of the plug flow. The correlations are useful
for applications based on plug flows. For example, they can
be used for designing plug-flow concentric tube (tube-in-tube)
heat exchangers.

The friction factor of the concentric plug is a function of
the aspect ratio and radius ratio. When the plug is very long,
i.e., β � 1, the plug flow behaves like the continuous flow.
When the radius ratio approaches zero or unity, the derived
friction factors match with those of the circular pipe flow and
the flow between parallel plates.
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