
International Journal of Heat and Mass Transfer 139 (2019) 1065–1076
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
A liquid plug moving in an annular pipe – Heat transfer analysis
https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.088
0017-9310/� 2019 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: sunny.li@ubc.ca (R. Li).
Yadi Cao, Xuan Gao, Ri Li ⇑
School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 April 2019
Received in revised form 20 May 2019
Accepted 26 May 2019
Available online 1 June 2019
Different from a fully developed continuous flow in an annular pipe, a liquid plug moving in an annular
pipe generates two toroidal vortexes, which cause radial transport that enhances heat transfer. The fully
developed heat transfer of the concentric plug is studied for three types of thermal wall conditions: inner-
flux, outer-flux, and isothermal. The fully developed heat transfer of the continuous flow is analytically
solved for the same thermal wall conditions. The comparison of heat transfer is made between the plug
and the continuous flow. Two heat transfer mechanisms, boundary layer transport and radial transport,
are considered to explain the heat transfer enhancement. If the radial transport is weak, the plug shows
similar heat transfer performance to the continuous flow, which is dominated by the boundary layer
transport. The heat transfer enhancement relies on the radial transport, which increases with decreasing
the inner radius, decreasing the plug length, and increasing the Peclet number.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Compact heat exchangers and compact cold plates based on
micro- or meso-channel liquid flows have been finding increased
applications [1,2]. One major driver is the continuous increase of
power density in microelectronic and power-electronic devices,
for which effective cooling needs to be applied to small areas to
handle high heat fluxes. The high cooling capability is attributed
to the large surface-to-volume ratio of the small-scale channels.
However, on the other hand, the large surface-to-volume ratio
means small hydraulic diameter, which make it difficult to increase
the flow Reynolds number due to the penalty of pressure drop
increase. This poses difficulty to increasing the heat transfer coef-
ficient for these small-scale channel flows.

To enhance the heat transfer, efforts have been put on modify-
ing the channel in order to change the flow behavior. Some of the
efforts include using curved channels or other channels with varied
passages [3,4] and adding small fins on the channel wall [5,6].
Another method is to change the type of flow from continuous flow
to plug flow. The continuous flow means the channel is entirely
filled with one liquid fluid. In a plug flow, the liquid fluid is seg-
mented by another immiscible fluid, which could be liquid or
gas. Due to the significant capillary effect associated with the small
channel size, each liquid segment occupies the entire cross-section
of the channel and looks like a moving plug. When such a liquid
plug is moving in a circular channel, the wall friction causes vortex
inside the plug, which provides advection in radial direction [7–9].
The heat transfer enhancement using plug flow has attracted much
attention recently [10].

A number of experimental studies on plug flows have been
reported. Gas-liquid plug moving in a vertical circular tube with
constant heat flux was studied [11,12], and the effects of the cap-
illary number and the Graetz number were investigated. For the
gas-liquid plug flow in a circular tube with constant heat flux,
the pressure drop penalty caused by the plug flow was measured
and compared to the Nusselt number increment, showing more
significant enhancement of heat transfer than the pressure drop
penalty [13]. Infrared camera was used to measure the continuous
temperature distribution of the outer surface of a circular tube con-
taining a constant gas-liquid plug flow [14,15]. Experimental study
on liquid-liquid plug flow has been conducted to study the flow
and thermal fields simultaneously using an IR camera and a
high-speed camera [16]. It was found the Nusselt number is highly
dependent on the plug length. The heat transfer coefficient of
air–water plug flow in horizontal microchannel with different con-
figurations of heated areas was studied using an array of heaters
and resistance temperature detectors instrumented inside the
channel [17].

Numerical approaches have been widely used for the study on
plug flows, due to the measurement limitation of the experimental
approaches for microchannels. For the numerical simulation of
plug flows, choosing the appropriate frame of reference is impor-
tant, because it significantly affects the required computational
resource. It has been shown that the moving frame technique took
only 1/150 of the computational time needed by the stationary
domain technique [18,19], and the results from the two techniques
showed good agreement. In order to deal with the interface shape
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Nomenclature

An, Bn, Cn, Dh coefficients
h heat transfer coefficient of continuous flow with

isothermal condition
hi heat transfer coefficient of continuous flow with inner-

flux condition
ho heat transfer coefficient of continuous flow with outer-

flux condition
hp heat transfer coefficient of plug with isothermal condi-

tion
hp;i heat transfer coefficient of plug with inner-flux condi-

tion
hp;o heat transfer coefficient of plug with outer-flux condi-

tion
I first-kind modified Bessel function
k thermal conductivity
K second-kind modified Bessel function
l plug length
q

0 0 heat flux
Q

0
circulation rate per unit length of the plug

r r-axis in cylindrical coordinate system
ri inner radius of plug
ro outer radius of plug
rc radial location of border between inner and outer vor-

texes
R radial location of pipe wall
T temperature
Ti constant inner wall temperature
To constant outer wall temperature
Tref constant reference temperature
DTstd characteristic temperature differencebTa an arbitrary local temperaturebTm mean temperature of continuous flowbTp;m mean temperature of the plug

uz velocity in z-direction
ur velocity in r-direction
U velocity of plug moving in pipe
z z-axis in cylindrical coordinate system

Symbols

ˆ dimensionless
average

Greek symbols
a thermal diffusivity
an eigenvalue
g radius ratio (or non-dimensional inner radius)
l dynamic viscosity
q density

Non-dimensional group parameters
Nu Nusselt number for continuous flow with isothermal

condition
Nui Nusselt number for continuous flow with inner-flux

condition
Nui;Dh

Nusselt number based on hydraulic diameter for inner-
flux condition

Nuo;Dh
Nusselt number based on hydraulic diameter for outer-
flux condition

Nuo Nusselt number for continuous flow with outer-flux
condition

Nup Nusselt number for plug with isothermal condition
Nup;i Nusselt number for plug with inner-flux condition
Nup;o Nusselt number for plug with outer-flux condition
Pe Peclet number
Re Reynolds number
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of the plug, especially for channels that cannot be simplified into
2D, the Level Set method [20,21] and the Volume of Fluid method
[22,23] are commonly used, although the two methods require
much computational time. Recently, there has been much work
using a combined approach, in which the flow field is analytically
solved based on the Stokes assumption, and the flow results are
put into the heat transfer computation based on the finite volume
method [8,24,25]. This combined approach has been proved effec-
tive and efficient, and is adopted in the present work.

The heat transfer of internal flows usually consists of entrance
region and fully developed region. A few studies on plug flows have
shown that the entrance region is around 20 times as long as the
hydraulic diameter of the channel [8,23,24]. For many microchan-
nels, the length-to-diameter ratio is around the order of magnitude
of 1000. Hence, it is useful to focus on the fully developed heat
transfer of plug flows. However, obtaining the fully developed heat
transfer from transient computation takes much computational
time. In the present work, the transient term in the heat transfer
governing equation is replaced with a constant term so that the
fully developed heat transfer performance can be computed based
on a non-transient equation.

Annular channels are commonly seen in many applications, and
one major application is the concentric tube (tube-in-tube) heat
exchanger. Recently, there has been attention to the convection
heat transfer in small concentric tubes [26-31]. One way to
enhance the convection in small concentric tubes is to use plug
flow instead of continuous flow. There has been no study on the
heat transfer of plug flow in an annular pipe. The present work is
focused on the fully developed heat transfer of a liquid plug in
an annular pipe. The analytically solved flow field is put into the
numerical computation of heat transfer, and the computation is
done by using the finite volume method to compute the non-
transient governing equation.

The fluid mechanics of a liquid plug moving in an annular pipe
has been solved [32]. The present work focuses on the heat transfer
aspect of the liquid plug. Fig. 1 schematically shows a liquid plug
with a length l is moving at a constant velocity U in an annular
pipe, which has an inner radius ri and an outer radius ro. The cylin-
drical coordinates system is attached to the plug as shown in Fig. 1.
The plug is assumed to have flat ends so that surface tension is not
considered. Hence, the fluid properties relevant to the flow dynam-
ics include the density q and the dynamic viscosity l.

The plug can be described by three dimensionless parameters,
which are

g ¼ ri
ro
; l̂ ¼ l

ro
; Re ¼ qUro

l
ð1Þ

Here g is the radius ratio, and is also called the dimensionless inner
radius. For g ! 0, the annular pipe approaches a circular pipe, while
for g ! 0 the annular pipe approaches two parallel plates. The

dimensionless length is denoted by bl, and Re is the Reynolds num-
ber. Additionally, the coordinates and velocities are normalized as

ẑ � z
ro
; r̂ � r

ro
; ûz � uz

U
; ûr � ur

U
ð2Þ

If Re 1� gð Þ � 1, the plug flow was solved as a Stokes flow [32].
The obtained velocity solutions were independent of the Reynolds
number, which appeared only in the pressure solution. As shown in



Fig. 1. (a) Schematic of a liquid plug moving in an annular pipe. In the floor-
attached frame reference that is not shown, the plug velocity is U. (b) Velocity
vectors show two vortexes in the plug.
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Fig. 1b, the interaction with the two concentric walls of the annular
pipe results in two toroidal vortexes within the concentric plug
(see Fig. 1b). It was found that the two vortexes border at

rc ¼ riroð Þ0:5 ð3Þ
The circulation caused by the two vortexes generates flow in

radial direction. The circulation volume rate per unit plug length
was found to satisfy

Q 0 ¼ 0:1973 r2o � r2i
� �

U
l

ð4Þ

The velocity solutions in the dimensionless form are [32]

ûz ẑ; r̂ð Þ¼
X1

n¼1;3;5:::

an Anr̂I1 anr̂ð ÞþBnI0 anr̂ð Þ�Cnr̂K1 anr̂ð Þ�DnK0 anr̂ð Þ½ �sin anẑð Þ

ð5Þ

ûr ẑ; r̂ð Þ¼
X1

n¼1;3;5:::

�an Anr̂I2 anr̂ð ÞþBnI1 anr̂ð ÞþCnr̂K2 anr̂ð ÞþDnK1 anr̂ð Þ½ �cos anẑð Þ

ð6Þ

Here I0, I1 and I2 are the 0th, 1st, and 2nd order of the first-kind
modified Bessel functions, respectively. Also, K0, K1 and K2 are
the 0th, 1st, and 2nd order of the second-kind modified Bessel func-
tions, respectively. The coefficients, An, Bn, Cn, and Dn, should be
determined from

gI2 angð Þ I1 angð Þ gK2 angð Þ K1 angð Þ
I2 anð Þ I1 anð Þ K2 anð Þ K1 anð Þ
gI1 angð Þ I0 angð Þ �gK1 angð Þ �K0 angð Þ
I1 anð Þ I0 anð Þ �K1 anð Þ �K0 anð Þ

0BBB@
1CCCA

An

Bn

Cn

Dn

0BBB@
1CCCA

¼

0
0

� 2g
l̂an

1� �1ð Þn� �
� 2g

l̂an
1� �1ð Þn� �

0BBBB@
1CCCCA

ð7Þ

where an ¼ np=bl is the eigenvalue.
In the present work, Eqs. (5)–(7) will be used to solve the fully
developed heat transfer of a liquid plug moving in an annular pipe
with different thermal wall conditions. To analyze the heat transfer
enhancement, the heat transfer of the plug flow will be compared
to the fully developed heat transfer of the continuous flow in an
annular pipe. The heat transfer of the continuous flow is solved
in the Appendix A.

2. General consideration

To analyze the heat transfer of a liquid plug, the thermal prop-
erties of the plug fluid need to be included. Here we choose the
thermal conductivity, k, and the thermal diffusivity a. To fully
describe the plug, in addition to the three dimensionless parame-
ters defined in Eq. (1), another parameter, the Peclet number, is
defined as

Pe ¼ Uro
a

ð8Þ

The thermal conductivity will appear in the dimensional heat
transfer.

In the present work, three types of thermal wall conditions are
considered, as shown in Fig. 2. Fig. 2a shows a uniform heat flux,
�q0 0 , is maintained at the outer surface, while the inner surface is
maintained adiabatic. This is referred to the outer-flux condition,
which is

k
@T
@r

����
r¼ro

¼ q00;
@T
@r

����
r¼ri

¼ 0 ð9Þ

Fig. 2b shows a uniform heat flux, q0 0 , is maintained at the inner
surface, while the outer surface is adiabatic. This is referred to the
inner-flux condition, which is

@T
@r

����
r¼ro

¼ 0; �k
@T
@r

����
r¼ri

¼ q00 ð10Þ

Fig. 2c shows that two different constant temperatures, Ti and
To, are maintained at the inner and outer surfaces of the plug. This
is referred to as the isothermal condition, which is

T r ¼ ri; z; tð Þ ¼ Ti; T r ¼ ro; z; tð Þ ¼ To ð11Þ
The governing equation of heat transfer in the cylindrical coor-

dinates system is

@T
@t

þ ur

r
@ Trð Þ
@r

þ uz
@T
@z

¼ a
1
r

@

@r
r
@T
@r

� �
þ @2T

@z2

" #
ð12Þ

In reality, the front and rear ends of the plug are in contact with
gas plugs. Due to negligible heat transfer with the gas, the two
ends of the plug are assumed to be adiabatic, which is

@T
@z

����
z¼0

¼ 0;
@T
@z

����
z¼l

¼ 0 ð13Þ

In addition to Eq. (2), we define dimensionless time and tem-
perature as

t̂ � tU
ro

; T̂ � T � Tref

DTstd
ð14Þ

Here Tref is a constant reference temperature, and DTstd is a charac-
teristic temperature difference. Both Tref and DTstd will be specifi-
cally defined for each type of thermal wall conditions. Applying
Eqs. (2) and (14) to Eq. (12) gives

@T̂
@t̂

þ ûr

r̂

@ T̂ r̂
	 

@r̂

þ ûz
@T̂
@ẑ

¼ 1
Pe

1
r̂

@

@r̂
r̂
@T̂
@r̂

 !
þ @2T̂

@ẑ2

" #
ð15Þ



Fig. 2. Three types of thermal wall conditions are studied: (a) Outer-flux condition; (b) Inner-flux condition; (c) Isothermal condition.
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The solutions for bur and buz are given by Eqs. (5)–(7). The bound-
ary condition at the two ends of the plug can be rewritten as

@T̂
@ẑ

�����
ẑ¼0

¼ 0;
@T̂
@ẑ

�����
ẑ¼l̂

¼ 0 ð16Þ

The focus of the present work is on the fully developed heat
transfer of the plug under the three types of thermal wall condi-
tions. The fully developed heat transfer means that the moving
plug has fully developed both hydro-dynamically and thermally.
The fully developed heat transfer will be defined and discussed.
It will be shown that the transient term in Eq. (15) can be replaced
with a non-transient term, which varies with the wall boundary
condition. As a result, Eq. (15) will become a steady state equation,
which, with Eqs. (5)–(7) inserted, is solved using the finite volume
method implemented in MATLAB2016A. The meshing resolution is

1� gð Þ=200 for br and bl=400 for bz, which was determined based on
mesh independency tests. One test will be shown in Section 3.1.

To determine the non-transient term for replacing the transient
term in Eq. (15), we need to first define the fully developed heat
transfer. Integrating Eq. (15) over the entire volume of the plug
and applying the divergence theorem gives

@

@t̂

Z 1

g

Z l̂

0
T̂2pr̂dr̂dẑ ¼ 1

Pe

Z l̂

0
2p@T̂

@r̂

�����
r̂¼1

� 2pg @T̂
@r̂

�����
r̂¼g

0@ 1Adẑ ð17Þ

where Eq. (16) has been used. Considering the volume integration
on the left hand side, we introduce a volume average temperature
of the plug given by

T̂p;m ¼ 1

p 1� g2ð Þ̂l

Z 1

g

Z l̂

0
T̂2pr̂dr̂dẑ ð18Þ

Hence, Eq. (17) can be rewritten as

dT̂p;m

dt̂
¼ 1

1� g2ð Þ̂l
2
Pe

Z l̂

0

@T̂
@r̂

�����
r̂¼1

� g
@T̂
@r̂

�����
r̂¼g

24 35dẑ ð19Þ

When heat transfer has fully developed, the relative shape of
the temperature profile will no longer change (see the temperature
contours shown in Fig. 2). This axiom has been used to derive the
fully developed heat transfer of continuous flows [33].The relative
temperature contour can be expressed by

T̂a r̂a; ẑa; t̂
� �� T̂ r̂; ẑ; t̂

� �
T̂a r̂a; ẑa; t̂
� �� T̂p;m t̂

� � ¼ f r̂; ẑ; r̂a; ẑað Þ ð20Þ

Here bTa is a local temperature at an arbitrary location bra;bza� �
. Since

the relative temperature contour is constant, we take time deriva-
tive of Eq. (20) and get

@T̂
@t̂

¼ dT̂a

dt̂
þ T̂a � T̂

T̂a � T̂p;m

dT̂p;m

dt
� dT̂a

dt̂

 !
ð21Þ
Next we will apply Eq. (21) to each type of wall condition to
determine the non-transient term that can be used to replace the
transient term in Eq. (15). We will then numerically compute Eq.
(15), and compare the fully developed heat transfer of the plug
with that of the continuous flow. The fully developed heat transfer
of the continuous flow is solved in the Appendix A.
3. Iso-flux wall conditions

When either the inner surface or the outer surface is at an iso-
flux condition and the other surface is adiabatic, we define a char-
acteristic temperature difference DTstd ¼ q0 0 ro=k. Hence, the dimen-
sionless temperature given in Eq. (14) can be rewritten as

T̂ � T � Tref

q00ro=k
ð22Þ

There is no need to specify the reference temperature Tref as the
heat transfer below will be based on temperature difference. The
outer-flux condition given by Eq. (9) becomes

@T̂
@r̂

�����
r̂¼1

¼ 1;
@T̂
@r̂

�����
r̂¼g

¼ 0 ð23Þ

The inner-flux condition given by Eq. (10) becomes

@T̂
@r̂

�����
r̂¼1

¼ 0;
@T̂
@r̂

�����
r̂¼g

¼ �1 ð24Þ
3.1. Outer-flux condition

A uniform heat flux is maintained at the outer surface of the
plug, while the inner surface is insulated. The heat transfer at the
wall-fluid interface is

� @T̂
@r̂

�����
r̂¼1

¼ Nup;o T̂ 1; ẑ; t̂
� �� T̂p;m t̂

� �h i
ð25Þ

Here bT 1;bz;bt	 

is the temperature at the outer surface of the plug.

The dimensionless heat transfer coefficient at the inner surface is

Nup;o ¼ hp;oro
k

ð26Þ

where hp;o is the dimensional heat transfer coefficient. In the pre-
sent work, the outer radius ro is used as the length scale in Nusselt
numbers, as ro is the length scale in all other dimensionless param-
eters. Hence, the trends of Nusselt numbers changing with the plug
dimensionless parameters reflect the trends of the dimensional heat
transfer coefficients changing with the dimensional parameters of
the plug. This will facilitate the discussion and explanation in the
present work.



Table 2
Validation of the present method against a previous study [24]. The plug length bl ¼ 4.

Pe 4 16 64 100

2Nup;o for g ¼ 0:01 8.02 16.51 25.38 27.50

Nusselt number in [24] 7.60 15.93 25.70 27.04

Fig. 3. The Nusselt number for plugs with the outer-flux condition, Nup;o given by
Eq. (32) versus the inner radius g. Comparison is made to the Nusselt number for
continuous flow Nuo given by Eqs. (A9) and (A13).
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How does Nup;o change with time when the heat transfer is fully

developed? If we replace bTa in Eq. (20) with the temperature on

the outer surface bT 1; bz;bt	 

, and then substitute Eq. (20) into Eq.

(25) for bT , we see that the local Nusselt number
Nup;o ¼ @f=@br� �br¼1

, which is independent of bt .
Applying Eq. (23) to Eq. (25) gives

�1 ¼ Nup;o T̂ 1; ẑ; t̂
� �� T̂p;m t̂

� �h i
ð27Þ

As discussed above, Nup;o is independent of time. We take the
time derivative of Eq. (27), and get

@T̂ 1; ẑ; t̂
� �
@t

¼ dT̂p;m

dt
ð28Þ

Nowwe replace bTa with bT 1; bz;bt	 

in Eq. (21), and then combine

Eqs. (21) and (28), we get

@T̂
@t

¼ dT̂p;m

dt
ð29Þ

Substituting Eq. (23) into Eq. (19) gives

dT̂p;m

dt̂
¼ 2

1� g2ð ÞPe ð30Þ

From Eqs. (29) and (30), the transient term in Eq. (15) can be
replaced with a non-transient term. As a result, Eq. (15) becomes

2
1� g2ð ÞPeþ

ûr

r̂

@ T̂ r̂
	 

@r̂

þ ûz
@T̂
@ẑ

¼ 1
Pe

1
r̂

@

@r̂
r̂
@T̂
@r̂

 !
þ @2T̂

@ẑ2

" #
ð31Þ

which is the governing equation for the outer-flux condition. With
the boundary conditions defined by Eqs. (16) and (23) and the
velocity solutions given by Eqs. (5)–(7), Eq. (31) is numerically
computed.

To evaluate the global heat transfer of the plug, we choose to
use the average heat transfer coefficient, which is the average heat
flux divided by the average temperature difference. Based on the
local convection given by Eq. (27), the Nusselt number for the
iso-flux condition at the outer surface is

Nup;o ¼ h
�
p;oro
k

¼ 1

l̂

Z l̂

0
T̂ 1; ẑ; t̂
� �

dẑ� T̂p;m

" #�1

ð32Þ

Here hp;o is the average heat transfer coefficient at the outer surface.
The dependency of the numerical computation on the mesh res-

olution is tested using a plug (g ¼ 0:05; bl ¼ 2; Pe ¼ 200) under
the outer-flux condition. Table 1 lists the tested resolutions, which
are shown in the form of the number of elements in br followed by
the number of elements in bz. The number of elements in bz is main-

tained twice that in br , becausebl > 1� g for most of the plugs stud-
ied in the present work. As the meshing resolution increases, the
change of the Nusselt number Nup;o decreases. Further increasing
from 200� 400 to 300� 600, the change of Nup;o is only 1.4%.
Table 1
Test of mesh dependency for a plug (g ¼ 0:05; bl ¼ 2; Pe ¼ 200) under the outer-flux con

Meshresolution 25* � 50** 75� 150

Nup;o 15.77 17.23

* The number of elements in br .
** The number of elements in bz.
Hence, the resolution 200� 400 is used throughout the present
work.

Since there are no heat transfer results of concentric plugs,
either numerical or experimental, available in literature, the pre-
sent method, i.e. Eqs. (5)–(7), (16), (23), and (31), is validated
against the reported results of a liquid plug in a circular pipe

(bl ¼ 4; Pe ¼ 4;16;64;100) with iso-flux wall condition [24]. We
apply the present method to a concentric plug with the same val-

ues of bl and Pe as the circular plug but a very small inner radius
g ¼ 0:01, such that the concentric plug approximates to the circu-
lar plug. The previous study [24] focuses on the transient process,
and the values of Nusselt number at bt ¼ 40, which can be consid-
ered fully developed, are used for validation. Different from the
present work, the Nusselt number in the previous study is based
on the diameter of the pipe. Hence, the results of 2Nup;o from the
present work are compared to the data reported in the previous
study. Table 2 shows that the difference is between 1% and 5%.

For the continuous flow in a circular tube annulus with the
outer-flux condition, the Nusselt number, Nuo, can be calculated
using Eq. (A9) and (A13).

Fig. 3 shows the Nusselt number of the plug under the outer-
flux condition Nup;o versus the inner radius g. Comparison is made
with the continuous flow under the same thermal wall condition.
dition.

100� 200 200� 400 300� 600

17.67 18.28 18.53



Fig. 4. The heat transport mechanisms in a plug with the outer-flux condition. (a) The trend of the boundary layer transport changing with the inner radius; (b) The trend of
the radial transport changing with the inner radius.

Fig. 5. The Nusselt number for plugs with the outer-flux condition, Nup;o given by
Eq. (32) versus 1=bl.
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The plug shows heat transfer enhancement over the continuous
flow. The enhancement varies with the plug properties: g, Pe,

and bl. For g ! 1, the aspect ratio of the plug bl= 1� gð Þ ! 1, which
means the plug is changing toward the continuous flow. Hence, as
g! 1, the plug behaves like the continuous flow.

Below we will try to explain the trends shown in Fig. 3. The heat
transfer between the pipe wall and the plug can be considered to
have the involvement of two mechanisms. One mechanism is the
heat transfer through the boundary layer, referred to as the
boundary-layer transport. This is the primary mechanism of convec-
tion heat transfer for continuous flow. The other one is the flow in
radial direction due to the vortex circulation, which is referred to
as radial transport. Both factors contribute to the heat transfer,
which, to facilitate further discussion below, can be written as
Nup;o Nup;o;b þ Nup;o;c

� �
. Here Nup;o;b and Nup;o;c represent the contri-

butions from the boundary-layer transport and the radial trans-
port, respectively.

According to the Reynolds analogy, the thermal boundary layer
can be discussed based on the velocity boundary layer. As shown in
Fig. 1b, the outer vortex is located between ro and rc. The average
velocity gradient at the outer wall can be expressed as

�1
l

Z l

0

@uz

@r

����
r¼ro

dz � U
ro � rcð Þ=2 ð33Þ

Multiplying Eq. (33) through by ro=U and considering the Rey-
nolds analogy, we write the relation between the Nusselt number
and the dimensionless velocity gradient as

Nup;o;b / �1

l̂

Z l̂

0

@ûz

@r̂

����
r̂¼1

dẑ � 2
1� g0:5 ð34Þ

where Eq. (3) has been used.
The involvement of the radial transport can be evaluated using

Nup;o;c
k
ro
ro / Q 0qcp ð35Þ

Putting Eq. (4) into Eq. (35) gives

Nup;o;c / 0:1973 1� g2
� �̂

l
�1
Pe ð36Þ

To show the effects of g in the two heat transfer mechanisms

discussed above, the term 1� g0:5
� ��1 in Eq. (34) is plotted versus

g in Fig. 4a, while the term 1� g2 in Eq. (36) is plotted in Fig. 4b.
Fig. 4a shows that the boundary layer transport at the outer surface
increases with increasing g. The trend looks similar to the trends of
the plug and continuous flow in Fig. 3, particularly to the trend of
the Nusselt number of the continuous flow. Fig. 4b shows the
radian transport increases with decreasing g. Based on Figs. 3
and 4, the heat transfer of the continuous flow follows the trend
of the boundary layer transport. The deviation of the plug from
the continuous flow in Fig. 3, which is the heat transfer enhance-
ment, can be attributed to the radial transport as shown in
Fig. 4b. From Eq. (36), the enhancement must be a function of g,
Pe, and bl.

Here we discuss the effects of the plug length and the Peclet
number on the heat transfer of the plug. From Eqs. (34) and (36),
the plug length appears in the radial transport but not in the

boundary layer transport. Since the plug length appears as 1=bl in
Eq. (36), Fig. 5 plots the Nusselt number versus 1=bl. Although the
trend is not linear, it is clear that the heat transfer increases with

the 1=bl. Reducing the plug length increases the circulation rate
per unit plug length, thereby increasing the radial transport. As a
result, the heat transfer enhancement is improved. One can also
see that the effect of the plug length diminishes for large g and
small Pe, For which the vortex circulation is weak.

From Eqs. (34) and (36), Pe appears only in the radial transport.
The effect of the Peclet number can be observed from Fig. 6, which



Fig. 6. The Nusselt number for plugs with the outer-flux condition, Nup;o given by
Eq. (32) versus the Peclet number of the plug Pe.

Fig. 7. The Nusselt number for plugs with the inner-flux condition, Nup;i given by
Eq. (42) versus the inner radius g. Comparison is made to the Nusselt number for
continuous flow Nui given by Eqs. (A14) and (A18).
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shows the Nusselt number versus Pe. Overall, the Nusselt number
increases with increasing Pe. When Pe is small, the plugs with
g ¼ 0:75 show better heat transfer than those with g ¼ 0:5. This
is because, for small Pe, the boundary layer transport is dominant,
while the radial transport is insignificant. As Pe increases, the
radial transport becomes significant, and the plugs with g ¼ 0:5
show superior heat transfer because of their higher radial transport
than those with g ¼ 0:75. The discussion here can be combined
with Figs. (3) and (5) for better understanding.

3.2. Inner-flux condition

The uniform heat flux is maintained at the inner surface, while
the outer surface is insulated. The heat transfer at the wall-fluid
interface is

� @T̂
@r̂

�����
r̂¼g

¼ Nup;i T̂ g; ẑ; t̂
� �� T̂p;m t̂

� �h i
ð37Þ

Here bT g;bz;bt	 

is the temperature at the inner surface of the plug.

The dimensionless heat transfer coefficient at the inner surface is

Nup;i ¼ hp;iro
k

ð38Þ

where hp;i is the dimensional heat transfer coefficient. Similar to the
discussion in Section 3.1, it can be proved that for fully developed
heat transfer, the Nusselt number Nup;i is independent of time.

Applying Eq. (24) to Eq. (37) gives

1 ¼ Nup;i T̂ g; ẑ; t̂
� �� T̂p;m t̂

� �h i
ð39Þ

Taking steps similar to Eqs. (28)–(30), for fully developed heat
transfer under the outer-flux condition, we obtain

@T̂
@t

¼ dT̂p;m

dt
¼ 2g

1� g2ð ÞPe ð40Þ

Replacing the transient term in Eq. (15) with Eq. (40), we
rewrite the governing equation as

2g
1� g2ð ÞPeþ

ûr

r̂

@ T̂ r̂
	 

@r̂

þ ûz
@T̂
@ẑ

¼ 1
Pe

1
r̂

@

@r̂
r̂
@T̂
@r̂

 !
þ @2T̂

@ẑ2

" #
ð41Þ
which is the governing equation for the inner-flux condition. With
the boundary conditions defined by Eqs. (16) and (24) and the
velocity solutions given by Eqs. (5)–(7), Eq. (41) is numerically
computed.

To evaluate the global heat transfer of the entire plug, the aver-
age Nusselt number is used, which is given by

Nup;i ¼ h
�
p;iro
k

¼ 1

l̂

Z l̂

0
T̂ g; ẑ; t̂
� �

dẑ� T̂p;m

" #�1

ð42Þ

Here hp;i is the average heat transfer coefficient.
For the continuous flow in a circular tube annulus with inner-

flux condition, the Nusselt number, Nui, can be calculated using
Eqs. (A14) and (A18).

Fig. 7 shows the Nusselt number of the plug, Nup;i, versus the
inner radius, g, for the inner-flux condition. The heat transfer of
the plug is compared with the heat transfer of the continuous flow.
Generally, the plug shows heat transfer enhancement over the con-
tinuous flow. However, the enhancement diminishes as the annu-
lar pipe changes toward a circular pipe, i.e. g! 0. Similar trend is
visible when the annular pipe changes toward two parallel plates,
i.e. g ! 1. As g! 1, the plug approaches the continuous flow. For
both the plug flow and the continuous flow, the relation of the heat
transfer versus the inner radius does not show a monotonic trend.
The Nusselt numbers increases for both g! 0 and for g! 1.

To explain the trends in Fig. 7, here we consider the boundary
layer transport and the radial transport for the inner-flux condi-
tion. Similar to the discussion in Section 3.1, we write
Nup;i Nup;i;b þ Nup;i;c

� �
. Here Nup;i;b and Nup;i;c represent the contribu-

tions from the boundary-layer transport and the radial transport,
respectively. Considering the inner vortex in the plug as shown
in Fig. 1b, we can write the velocity gradient at the inner surface as

1
l

Z l

0

@uz

@r

����
r¼ri

dz � U
rc � rið Þ=2 ð43Þ

From Eqs. (3) and (43), the contribution of the boundary layer
transport can be shown by

Nup;i;b / 1

l̂

Z l̂

0

@ûz

@r̂

����
r̂¼g

dẑ � 2
g0:5 � g

ð44Þ

For the inner-flux condition, the radial transport is



Fig. 8. The heat transport mechanisms in a plug with the inner-flux condition. (a) The trend of the boundary layer transport changing with the inner radius; (b) The trend of
the radial transport changing with the inner radius.

Fig. 9. The Nusselt number for plugs with the inner-flux condition, Nup;i given by
Eq. (42) versus 1=bl. Fig. 10. The Nusselt number for plugs with the inner-flux condition, Nup;i given by

Eq. (42) versus the Peclet number of the plug Pe.
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Nup;i;c
k
ro
ri / Q 0qcp ð45Þ

Putting Eq. (4) into Eq. (45)) gives
Nup;i;c / 0:1973
1
g
� g

� �̂
l
�1
Pe ð46Þ

The effect of g on the boundary layer transport is shown in

Fig. 8a by plotting the term g0:5 � g
� ��1 versus g. The trend shown

in Fig. 8a is similar to that observed in Fig. 7. For the radian trans-
port, 1� g2 is plotted versus g in Fig. 8b. The radial transport
decreases toward zero as g! 1, and increases with decreasing g.
Based on Figs. 7 and 8, the heat transfer is primarily driven by
the boundary layer transport, while the radial transport is the
major cause for the heat transfer enhancement over the continuous
flow. However, for g ! 0 (i.e. the heat source area is shrinking to
disappear), it is difficult to relate the steep increase of the radial
transport shown in Fig. 8b to the diminishing enhancement shown
in Fig. 7.

From Fig. 7 we already observe that the length of the plug
affects the heat transfer enhancement of the plug. According to
Eq. (46), the Nusselt number is plotted versus 1=bl in Fig. 9. The heat

transfer increases with increasing 1=bl. The shorter the plug, the
more circulation per unit length in the plug, which results in more
radial transport. The slopes of the data curves in Fig. 9 vary with Pe
and g, which can be explained by Eq. (46). The higher the Peclet

number Pe, the more significantl effect of bl. For large radius ratio,
for example g ¼ 0:9, the effect of the plug length becomes
insignificant.

Figs. 7 and 9 have shown that the heat transfer is also depen-
dent on the Peclet number. Fig. 10 shows the Nusselt number of
the plug versus the Peclet number. The heat transfer increases with
increasing Pe, due to the increase of the radial transport. The slopes
for g ¼ 0:25 are higher than those for g ¼ 0:75, and the slopes forbl ¼ 2 are higher than those for bl ¼ 3. Both can be explained by
Eq. (46).
4. Isothermal wall condition

Fig. 2c shows a plug moving in an annular pipe with two differ-
ent constant temperatures at the inner and outer surfaces of the



Fig. 12. The ratio of Nusselt number of the plug to the continuous flow, Nup=Nu, for
the isothermal condition versus 1=bl. Nup and Nu are given by Eq. (53) and Eq. (A25),
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plug, and the wall condition is given in Eq. (11). To specifically
define the dimensionless temperature given by Eq. (14), we choose
the inner surface temperature as the reference temperature, i.e.
Tref ¼ Ti, and the difference between the two wall temperatures
as the characteristic temperature difference, i.e. DTstd ¼ To � Ti.
As a result, we have

T̂ � T � Ti

To � Ti
ð47Þ

Accordingly, the dimensionless form of Eq. (11) is

T̂ g; ẑ; t̂
� � ¼ 0; T̂ 1; ẑ; t̂

� � ¼ 1 ð48Þ
Now we apply the two constant temperatures to Eq. (21) by let-

ting bTa ¼ bT g; bz;bt	 

and bT ¼ bT 1; bz;bt	 


, and we get

dT̂p;m

dt̂
¼ 0 ð49Þ

Then we apply Eq. (49) and bTa ¼ bT g;bz;bt	 

to Eq. (21), and get

@T̂
@t̂

¼ 0 ð50Þ

Eq. (50) indicates that the fully developed heat transfer for a
concentric plug with two constant boundary temperatures must
be steady state heat transfer. The governing equation given by
Eq. (15) reduces to

ûr

r̂

@ T̂ r̂
	 

@r̂

þ ûz
@T̂
@ẑ

¼ 1
Pe

1
r̂

@

@r̂
r̂
@T̂
@r̂

 !
þ @2T̂

@ẑ2

" #
ð51Þ

Hence, the fully developed heat transfer of a liquid plug in an
annular pipe with isothermal wall condition can be obtained by
numerically computing Eq. (51) with the velocity solutions given
by Eqs. (5)–(7) and the boundary conditions defined by Eqs. (16)
and (48).

The heat transfer can be assessed by introducing an overall heat
transfer coefficient hp based on the heat transfer area at the outer
surface, which can be written as

�rok
@T
@r

����
r¼ro

¼ hpro Ti � Toð Þ ð52Þ
Fig. 11. The Nusselt number for plugs with the isothermal condition Nup given by
Eq. (53) versus the inner radius g. Comparison is made to the Nusselt number for
continuous flow Nu given by Eq. (A25).
From Eqs. (47) and (52), the dimensionless overall heat transfer
coefficient is

Nup ¼ hpro
k

¼ @T̂
@r̂

�����
r̂¼1

ð53Þ

Fig. 11 shows the Nusselt number versus the inner radius in
comparison with the continuous flow. As discussed in the Appen-
dix A, the fully developed heat transfer of continuous flow under
the isothermal condition is heat conduction only, and the Nusselt
number is given by Eq. (A25). As compared to the continuous flow,
the plug shows heat transfer enhancement due to the radial trans-
port. Fig. 11 shows that the enhancement diminishes for g ! 1, as
the plug with large aspect ratio behaves like the continuous flow.

To better show the effects of the other two parameters bl and Pe
on the heat transfer enhancement, the ratio of Nusselt number of
the plug to the continuous flow, Nup=Nu, is presented. Fig. 12
shows the effect of the plug length by plotting the enhancement
respectively.

Fig. 13. The ratio of Nusselt number of the plug to the continuous flow, Nup=Nu, for
the isothermal condition versus the Peclet number Pe. Nup and Nu are given by Eqs.
(53) and (A25), respectively.
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versus 1=bl. Clearly, the shorter the plug, the more enhancement of

heat transfer. The enhancement shows linear relationship with 1=bl,
and the slope varies with g and Pe. The effect of Pe on the enhance-
ment is shown in Fig. 13. Increasing the Peclet number causes the
radial transport to increase, which results in more enhancement.
For small values of Pe, the ratio of Nusselt number approaches
unity, because of the decrease of the radian transport.

5. Conclusions

The fully developed heat transfer of a liquid plug moving in a
tube annulus is studied for three types of thermal wall conditions.
The heat transfer governing equation is numerically solved based
on the velocity solutions developed in the previous study. It has
been shown that the transient term in the governing equation
can be replaced with a non-transient term so that the fully devel-
oped heat transfer can be numerically computed using the non-
transient equation. It has been shown that the heat transfer perfor-
mance of the plug flow can be explained based on two heat transfer
mechanisms, boundary layer transport and radial transport. The
heat transfer of the liquid plug is found to be superior to the con-
tinuous flow if the plug has small inner radius, short length, and/or
large Peclet number. The heat transfer enhancement of the plug
over the continuous flow is attributed to the radial transport of
the plug, and the radial transport increases with decreasing the
inner radius, decreasing the plug length, and increasing the Peclet
number.
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Appendix A. Continuous flow in a circular tube annulus

In this Appendix, the fully developed heat transfer of the contin-
uous flow in an annular pipe will be analytically solved for three
types of thermal wall conditions, and Nusselt numbers will be
derived. A fully developed continuous flow in a tube annulus is
shown in Fig. A1. Different from the plug flow analysis, here we
consider the Euler frame of reference, in which the mean velocity
Fig. A1. Fully developed continuous flow in a tube annulus.
of the flow is U. We still use the dimensionless temperature
defined by Eq. (14). Both the flow and thermal conditions are

steady, which means @bT=@bt ¼ 0, @bur=@bt ¼ 0, and @buz=@bt ¼ 0. The
fully developed hydrodynamics means @bur=@bz ¼ 0 and
@buz=@bz ¼ 0. As a result, bur ¼ 0, and buz is a function of br only.

Hence, Eq. (15) reduces to

ûz
@T̂
@ẑ

¼ 1
Pe

1
r̂

@

@r̂
r̂
@T̂
@r̂

 !
ðA1Þ

Here we have dropped the axial conduction @2bT=@bz2 due to its rel-
ative insignificance as compared to the radial conduction. The
velocity profile is given by [34]

ûz ¼ Ar̂2 þ B lnr̂ � A ðA2Þ
where

A ¼ 2lng
g2 1� lngð Þ � 1þ lngð Þ ; B ¼ 2 1� g2

� �
g2 1� lngð Þ � 1þ lngð Þ ðA3Þ

As an example, Eq. (A2) is plotted in Fig. A1 for g ¼ 0:45. We
will solve Eq. (A1) for the three thermal wall conditions defined
by Eqs. (23), (24), and (48).

First, we need to define the fully developed heat transfer so that
we will replace the advection term in Eq. (A1) with a term inde-
pendent of bz. We integrate Eq. (A1) over the cross-section of the
flow, and get

d
dẑ

Z 1

g
ûzT̂2pr̂dr̂ ¼ 1

Pe
2p @T̂

@r̂

�����
r̂¼1

� 2pg@T̂
@r̂

�����
r̂¼g

0@ 1A ðA4Þ

In view of the term on the left hand side, we defined advection
mean temperature, which is

T̂m ¼ 1
p 1� g2ð Þ

Z 1

g
ûT̂2pr̂dr̂ ðA5Þ

It follows from Eqs. (A4) and (A5) that

dT̂m

dẑ
¼ 1

1� g2

2
Pe

@T̂
@r̂

�����
r̂¼1

� g
@T̂
@r̂

�����
r̂¼g

0@ 1A ðA6Þ

Similar to Eq. (20), the fully developed heat transfer of the con-
tinuous flowmeans the relative shape of the temperature profile at
any location bz is independent of bz. This statement can be expressed
by

T̂a r̂a; ẑð Þ � T̂ r̂; ẑð Þ
T̂a r̂a; ẑð Þ � T̂m ẑð Þ

¼ f r̂; r̂að Þ ðA7Þ

where bTa is a local temperature at an arbitrary location bra; bz� �
.

Taking the time derivative of Eq. (A7) gives

@T̂
@ẑ

¼ dT̂a

dẑ
þ T̂a � T̂

T̂a � T̂m

dT̂m

dẑ
� dT̂a

dẑ

 !
ðA8Þ

For the outer-flux condition, the Nusselt number is defined
based on Eqs. (22) and (23), which is

Nuo ¼ horo
k

¼ T̂m ẑð Þ � T̂ 1; ẑð Þ
h i�1

ðA9Þ

Taking steps similar to Eqs. (28) and (29) gives

@T̂
@ẑ

¼ dT̂m

dẑ
¼ 1

1� g2

2
Pe

ðA10Þ

Putting Eq. (A10) into Eq. (A1) gives the governing equation for
the outer-flux condition, which is



Fig. A2. Nusselt numbers based on the hydraulic diameter of the tube annulus for
the inner-flux condition and the outer-flux condition. The inset figure provides a
close-up of the outer-flux Nusselt number.
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2
1� g2 Ar̂2 þ Blnr̂ � A

	 

¼ 1

r̂
@

@r̂
r̂
@T̂
@r̂

 !
ðA11Þ

Solving Eq. (A11) with Eq. (23) gives

T̂ 1; ẑð Þ� T̂ ¼ 2
1�g2

A
16

r̂4þB
4
r̂2lnr̂�AþB

4
r̂2þAþBþ2�2g2

4
lnr̂

� �����1
r̂

ðA12Þ
To obtain the Nusselt number defined in Eq. (A9), here we take

the advection mean of Eq. (A12) by following the definition given
by Eq. (A5). As a result, we get

T̂m� T̂ 1; ẑð Þ¼ 1
p 1�g2ð Þ

R 1
g ûz T̂� T̂o

	 

2pr̂dr̂¼ 2
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16þ B

4
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4
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384A

2þ 11
72ABþ 11
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2
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� �h i
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128g
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96g
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2B
2�AB

	 

lngþ 3
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2þ 3
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4AB
h i

�

AþBð Þ
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2

h i
�

1�g2
2 Ag4

4 lng� 1
4

� �þBg2
2 lngð Þ2� g2

2 AþBð Þ lng� 1
2

� �h i

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;
ðA13Þ

Hence, for continuous flow in an annular pipe with the outer-
flux condition, the Nuo can be calculated using Eqs. (A9) and (A13).

For the inner-flux condition, following Eqs. (22) and (24),
respectively, we define the Nusselt number as

Nui ¼ hiro
k

¼ T̂ g; ẑð Þ � T̂m ẑð Þ
h i�1

ðA14Þ

Here hi is the dimensional heat transfer coefficient. It should be
noted that ro is consistently used as the length scale.

Taking steps similar to Eqs. (28) and (29), we get

@T̂
@ẑ

¼ dT̂m

dẑ
¼ g

1� g2

2
Pe

ðA15Þ

For the inner-flux condition, Eq. (A1) can be written as

2g
1� g2 Ar̂2 þ Blnr̂ � A

	 

¼ 1

r̂
@

@r̂
r̂
@T̂
@r̂

 !
ðA16Þ

Solving Eq. (A16) with Eq. (24) gives

T̂ � T̂ g; ẑð Þ ¼ 2g
1� g2

A
16

r̂4 þ B
4
r̂2lnr̂ � Aþ B

4
r̂2 þ Aþ B

4
lnr̂

� �����r̂
g

ðA17Þ
To obtain the Nusselt number defined in Eq. (A14), here we take

the advection-based mean of Eq. (A17) by following the definition
given by Eq. (A5). As a result, we get

T̂ g; ẑð Þ� T̂m ¼ 1
p 1�g2ð Þ

R 1
g ûz T̂ g; ẑð Þ� T̂

h i
2pr̂dr̂¼
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16g
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2

h i
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9>>>>=>>>>;
ðA18Þ

Hence, for continuous flow in an annular pipe with the inner-
flux condition, the Nusselt number Nui can be calculated using
Eqs. (A14) and (A18)
The fully developed heat transfer of continuous flow in a circu-
lar tube annulus has been reported in data tables [33], where the
Nusselt numbers are based on the hydraulic diameter, 2 ro � rið Þ.
The Nusselt numbers based on the outer radius can be converted
to the Nusselt numbers based on the hydraulic dimeter using

Nui;Dh
¼ 2 1� gð ÞNui ðA19Þ

and

Nuo;Dh
¼ 2 1� gð ÞNuo ðA20Þ

In Fig. A2, the two Nusselt numbers, Nui;Dh
and Nuo;Dh

, are plot-
ted versus g using the solutions derived above. The derived solu-
tions agree with the tabulated data [33]. With increasing g, the
Nusselt number for the outer-flux condition, Nuo;Dh

, increases from
4.364, which is for continuous flow in a circular pipe, to 5.385,
which is for continuous flow in two parallel plates. With increasing
g, the Nusselt number for the outer-flux condition, Nui;Dh

, decrease
toward the Nusselt number for continuous flow in two parallel
plates.

For continuous flow in a circular tube annulus with the isother-
mal wall condition given Eq. (48), the dimensionless temperature
has been defined by Eq. (47). For fully developed heat transfer,
from Eq. (A5), it can be shown that

@T̂
@ẑ

¼ dT̂m

dẑ
¼ 0 ðA21Þ

As a result, Eq. (A1) reduces

1
r̂

@

@r̂
r̂
@T̂
@r̂

 !
¼ 0 ðA22Þ

A fully thermally developed continuous flow under the isother-
mal condition only conducts heat. In other words, the convection
here is conduction only, but no advection. The flow does not trans-
port thermal energy in axial flow direction as shown in Eq. (A21),
and there is no advection in radial direction as bur ¼ 0.

For the wall condition defined by Eq. (48), the solution to Eq.
(A22) is

T̂ ¼ ln g=r̂ð Þ
lng

ðA23Þ

Similar to Eq. (52), we introduce an effective heat transfer coef-
ficient based on the outer surface area, which can be written as
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�rok
@T
@r

����
r¼ro

¼ hro Ti � Toð Þ ðA24Þ

From Eq. (27), the Nusselt number for the fully developed heat
transfer of continuous flow in a circular tube annulus with the
isothermal condition is

Nu ¼ hro
k

¼ � @T̂
@r̂

�����
r̂¼1

¼ � 1
lng

ðA25Þ
Appendix B. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.088.
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