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Abstract

Learning complex multi-agent system dynamics from data is crucial across many
domains. Existing physics-informed approaches, like Hamiltonian Neural Net-
work, introduce inductive bias by strictly following energy conservation law.
However, many real-world systems do not strictly conserve energy. Thus, we
focus on Time-Reversal Symmetry, a broader physical principle indicating that
system dynamics should remain invariant when time is reversed. This principle
not only preserves energy in conservative systems but also serves as a strong in-
ductive bias for non-conservative, reversible systems. In this paper, we propose
a simple-yet-effective self-supervised regularization term as a soft constraint that
aligns the forward and backward trajectories predicted by a continuous graph neu-
ral network-based ordinary differential equation (GraphODE). In addition, we the-
oretically show that our regularization essentially minimizes higher-order Taylor
expansion terms during the ODE integration steps, which enables our model to be
more noise-tolerant and even applicable to irreversible systems2.

1 Introduction

The intricate nature of multi-agent systems often necessitates vast amounts of training data. Vanilla
data-driven neural simulators trained on limited datasets tend to be less generalizable, and can violate
physical properties of a system. As depicted in Figure 1 (a.1), the learned energy curve of a baseline
model (LG-ODE) (Huang et al., 2020) is prone to explosion, even though the ground-truth energy
remains constant. Existing works like Hamiltonian- Neural Nets and ODE (Greydanus et al., 2019;
Sanchez-Gonzalez et al., 2019) strictly enforce the energy conservation law, leading to more accu-
rate predictions. However, not all real-world systems adhere to strict energy conservation, such as n-
body spring systems with periodic external forces or frictions shown in Figure 1 (a.2) and (a.3). For
these systems, applying strict energy conservation constraint proposed by Greydanus et al. (2019);
Sanchez-Gonzalez et al. (2019) could lead to inferior performance. As shown in Figure 1(b.1), for
classical and deterministic mechanics, energy-conservative systems also obey time-reversal symme-
try (Tolman, 1938). Meanwhile, time-reversible systems also encompass non-conservative systems,
such as Stokes flow (Pozrikidis, 2001), which has significant real-world applications (Kim & Kar-
rila, 2013). Therefore, by ensuring system dynamics are approximately time-reversal invariant, we
can design more realistic and effective neural simulators for dynamical system modeling.

We propose a simple-yet-effective self-supervised regularization term as a soft constraint that aligns
forward and backward trajectories predicted by our model, which has GraphODE as its backbone.

∗ Equally Contributed
2Code implementation can be found at here.
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Figure 1: (a) Three n-body spring systems characterized by their energy conservation and time
reversal properties. p, q,m denote momentum, position and mass, respectively. Proof of energy
conservation and time reversal for these systems can be found in Appendix C (b) Classification of
classical mechanical systems based on (Tolman, 1938; Lamb & Roberts, 1998)

We name our model TANGO: Time-Reversal Latent Graph ODE. This time-reversal loss does not
need additional labels beyond ground-truth observations, while effectively imposing time-reversal
symmetry to enable more accurate model predictions. We also theoretically explain why the pro-
posed time-reversal symmetry loss could in general help learn more fine-grained and long-context
system dynamics from the numerical aspect, benefiting even irreservible systems.

2 Preliminaries

A system is said to have Time-Reversal Symmetry if its dynamics remain the same when the flow of
time is reversed (Noether, 1971). Formally, let’s consider a multi-agent dynamical system described
in the matrix form dZ(t)

dt = F (Z(t)), where Z(t) ∈ RN×d is the time-varying state matrix of all
agents. The system is said to follow the Time-Reversal Symmetry if it satisfies

dR(Z(t))

dt
= −F (R(Z(t)), (1)

where R(·) is a reversing operator3.Time-Reversal Symmetry indicates that after the reversing oper-
ation R(·), the gradient of any point of the trajectory Z(t) will be reversed (in the opposite direction).

Now we introduce a time evolution operator ϕτ : Z(t) 7→ ϕτ (Z(t)) = Z(t + τ) for arbitrary
t, τ ∈ R, which satisfies ϕτ1 ◦ ϕτ2 = ϕτ1+τ2 for all τ1, τ2 ∈ R4. The time evolution operator helps
us to move forward or backward through time, thus forming a trajectory. Based on Lamb & Roberts
(1998), we can integrate Eqn. 1 and have:

R ◦ ϕt = ϕ−t ◦R = ϕ−1
t ◦R, (2)

which means that moving forward t steps and then turning backward is equivalent to firstly turning
backward and then moving to the other direction t steps. Eqn. 2 has been widely used to describe
time-reversal systems in existing literature (Huh et al., 2020; Valperga et al., 2022; Roberts & Quis-
pel, 1992). Nevertheless, Eqn 2 is equivalent to R ◦ ϕt ◦ R ◦ ϕt = I , where I denotes identity
mapping, which is more intuitive to understand and more straightforward to guide the design of our
time-reversal regularizer. It means if we move t steps forward and then turn backward and move for
t more steps, it shall restore back to the same state. We prove the equivalence in Appendix B.1

3 Method

We represent a multi-agent dynamical system as a graph G = (V, E), where V denotes the node
set of N agents5 and E denotes the set of edges representing their physical interactions, which
for simplicity we assumed to be static over time. We denote X(t) ∈ RN×d as the feature matrix at

3Taking a Hamiltonian system (q,p, t) as an example, where q,p denote position and momentum, the
reversing operator R : (q,p, t) 7→ (q,−p,−t) makes the momentum reverse and traverse back over time.
(Lamb & Roberts, 1998).

4◦ denotes composition
5Following (Kipf et al., 2018), we use “agents” to denote “objects” in dynamical systems, which is different

from “intelligent agent” in AI.
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Figure 2: Overall framework of TANGO

timestamp t for all agents, with d as the dimension of features. Model input consists of trajectories of
such feature matrices over K timestamps X(t1:K) = {X(t1),X(t2), . . . ,X(tK)}. To incorporate
Time-Reversal Symmetry in modeling multi-agent dynamical systems, we propose TANGO, a novel
GraphODE framework with a flexible regularization, as depicted in Figure 2.

Forward Trajectory Prediction and Reconstruction Loss. We utilize the GraphODE framework
described in Appendix A to model multi-agent dynamical systems, which follows the encoder-
processor-decoder architecture. Specifically, we first utilize a Transformer-based spatial-temporal
GNN described in Huang et al. (2020) as our encoder fENC(·) to compute the initial states from
observed trajectories. We then utilize the GNN operator described in Kipf et al. (2018) as our ODE
function g(·), which drives the system to move forward and output the forward trajectories for latent
states zfwd

i (t) at each continuous time t and each agent i. Finally, we employ a Multilayer Percep-
tron (MLP) as a decoder to predict output dynamics based on the latent states. We summarize the
whole procedure as:

żfwd
i (t) :=

dzfwd
i (t)

dt
= g(zfwd

1 (t), zfwd
2 (t), · · · zfwd

N (t)),

where zfwd
0 (t) = fENC(X(t1:K),G), ŷfwd

i (t) = fDEC(z
fwd
i (t))

(3)

To train such a GraphODE from data, we can use the reconstruction loss that minimizes the L2
distance between predicted forward trajectories ŷfwd

i (t) and the ground truth trajectories yi(t)

Lpred =

N∑
i=1

T∑
t=0

∥∥∥yi(t)− ŷfwd
i (t)

∥∥∥2
2

(4)

Reversed Trajectory Prediction and Regularization Loss. We now design a novel time-reversal
symmetry loss as a soft constraint to flexibly regulate systems’ total energy to prevent it from chang-
ing sharply. Specifically, based on the equivalent definition of time-reversal symmetry, we first com-
pute the backward trajectories zrev starting from the ending state of the forward one, traversed back
over time:

żrev
i (t) :=

dzrev
i (t)

dt
= −g(zrev

1 (t), zrev
2 (t), · · · zrev

N (t)),

where zrev
i (0) = zfwd

i (T ), ŷrev
i (t) = fDEC(z

rev
i (t)).

(5)

Next, if the system follows Time-Reversal Symmetry, the forward and backward trajectories shall
exactly overlap. We thus design the reversal loss by minimizing the L2 distances between model
forward and backward trajectories:

Lreverse =

N∑
i=1

T∑
t=0

∥∥∥ŷfwd
i (t)− ŷrev

i (T − t)
∥∥∥2
2

(6)

Finally, we jointly train TANGO as a weighted combination of the two losses:

L = Lpred + αLreverse =

N∑
i=1

T∑
t=0

∥∥∥yi(t)− ŷfwd
i (t)

∥∥∥2
2
+ α

N∑
i=1

T∑
t=0

∥∥∥ŷfwd
i (t)− ŷrev

i (T − t)
∥∥∥2
2
, (7)

where α is a positive coefficient to balance the two losses based on different targeted systems.
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Table 1: Evaluation results on MSE (10−2).

Method LatentODE HODEN TRS-ODEN TRS-ODENGNN LGODE TANGO TANGOLrev=gt-rev TANGOLrev=rev2

Simple Spring 5.2622 3.0039 3.6785 1.4115 1.7429 1.1178 1.1313 1.6786
Forced Spring 5.0277 4.0668 4.4465 2.1102 1.8929 1.4525 1.5254 1.9786
Damped Spring 3.3419 8.7950 1.7595 0.5951 0.9718 0.5944 0.6171 0.9692
Pendulum 2.6894 741.2296 741.4988 596.0319 1.4156 1.2527 1.6158 1.5631

Theoretical Analysis of Time-Reversal Symmetry Loss. We next theoretically show that the
time-reversal loss also numerically reduces prediction errors, making it valuable for a wide range of
classical mechanics systems. Specifically, it minimizes higher-order Taylor expansion terms during
ODE integration.
Theorem 1. Let ∆t denote the integration step size in an ODE solver and T be the prediction
length. The reconstructed loss Lpred defined in Eq 4 is O(T 3∆t2). The time-reversal loss Lreverse

defined in Eqn 6 is O(T 5∆t4).
We prove Theorem 1 in Appendix B.2. From Theorem 1, we can see two nice properties of our
proposed time-reversal loss: 1) Regarding the relationship to ∆t, Lreverse is optimizing a high-
order term ∆t4, which forces the model to predict fine-grained physical properties such as jerk
(the derivatives of accelerations). In comparison, the reconstruction loss optimizes ∆t2, which
mainly guides the model to predict the locations/velocities. Therefore, the combined loss enables our
model to be more noise-tolerable; 2) Lreverse is more sensitive to total sequence length (T 5), thus
it provides more regularization for long-context prediction, a key challenge for dynamic modeling.

Three additional justifications about our implementations can be found in Appendix B.3.

4 Experiments

Dynamical Systems and Datasets. We conduct systematic evaluations over three different spring
systems (Kipf et al., 2018) and a complex chaotic pendulum system. For spring systems, we consider
three system settings: 1) conservative, i.e. no interactions with the environments, we call it Simple
Spring; 2) non-conservative with frictions, we call it Damped Spring; 3) non-conservative with
periodic external forces, we call it Forced Spring. The chaotic triple Pendulum system consists of
sequentially connected sticks in a 2D plane, and is highly sensitive to initial conditions, leading to
diverse trajectories (Shinbrot et al., 1992; Stachowiak & Okada, 2006; Awrejcewicz et al., 2008)
that are chaotic and nonlinear. The dataset and task setup details can be found in Appendix D.1 D.2.

Main Results. Table 1 presents prediction performance across models measured by mean squared
error (MSE). TANGO consistently surpasses other models across datasets, highlighting its gener-
alizability and the efficacy of its reversal loss. Specifically, it reports an improvement in MSE
ranging from 11.5% to 34.6% over the second-best baseline. The baseline and implementation
details can be found in Appendix D.3 D.4. We observe that multi-agent approaches (LG-ODE,
TRS-ODENGNN, TANGO) consistently outperform single-agent baselines (LatentODE, HODEN,
TRS-ODEN), showing the importance of capturing inter-agent interactions via the message passing
of Graph Neural Networks (GNN) encoding and ODE operations.

When examining individual datasets, HODEN excels among single-agent models on Simple Spring,
indicating the benefit of incorporating appropriate physical bias. However, its performance is no-
tably lower on Force Spring and Damped Spring. This suggests that wrongly applied inductive biases
can degrade performance. Consequently, while HODEN is suited for strictly energy-conservative
systems, TANGO offers versatility across diverse classical dynamics. Note that HODEN naively
forces each agent to be energy-conservative, instead of the whole system. Therefore, it still per-
forms worse than multi-agent baselines on energy-conservative systems.

The chaotic nature and high sensitivity to initial states 6 of the Pendulum system create challenges
for dynamic modeling. This lead to unstable predictions for models like HODEN and TRS-ODEN,
as these methods rely on linear spline interpolation (Endre Süli, 2003) to approximate missing initial
states of agents, which can cause dramatic prediction errors. In contrast, latent models like Laten-
tODE, LG-ODE, and TANGO that utilize advanced encoders derive latent states from observed data,
yielding superior accuracy. TANGO maintains the most accurate predictions on the Pendulum sys-
tem, further showing its robust generalization capabilities. We provide more experiment results and
ablations in Appendix D.5.

6Visualization to show Pendulum is highly sensitive to different initial states can be found here
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5 Limitations

Currently TANGO only incorporates inductive bias from the temporal aspect, while there are still
many important properties in the spatial aspect such as translation and rotation equivariance Satorras
et al. (2021). Future endeavors that combine biases from both temporal and spatial dimensions could
unveil a new frontier in dynamical systems modeling.
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A Model Details

We represent a multi-agent dynamical system as a graph G = (V, E), where V denotes the node
set of N agents7 and E denotes the set of edges representing their physical interactions, which for
simplicity we assumed to be static over time. We denote X(t) ∈ RN×d as the feature matrix at
timestamp t for all agents, with d as the dimension of features. Model input consists of trajectories
of such feature matrices over K timestamps X(t1:K) = {X(t1),X(t2), . . . ,X(tK)}. Note that the
timestamps t1, t2 · · · tK can have non-uniform intervals and be of any continuous values. Our goal
is to learn a neural simulator fθ(·) : X(t1:K) → Y (tK+1:T ), which predicts node dynamics Y (t)
in the future based on observations. We use yi(t) to denote the targeted dynamic vector of agent i
at time t. In some cases when we are only predicting system feature trajectories, Y (·) ≡ X(·).

A.1 GraphODE for Multi-agent Dynamical Systems

Graph Neural Networks (GNNs) have been widely used to model multi-agent dynamical systems
which approximate pair-wise node (agent) interaction through message passing to impose strong
inductive bias. The majority of them are discrete models, which learn a fixed-step state transition
function such as to predict trajectories from timestamp t to timestamp t + 1. However, discrete
models (Battaglia et al., 2016; Kipf et al., 2018; Sanchez-Gonzalez et al., 2020) have two main
limitations: (1) they are not able to adequately model systems that are continuous in nature such as
n-body spring systems. (2) they cannot deal with irregular-observed systems, where the observations
for different agents are not temporally aligned and can happen at arbitrary time intervals.

Recently, researchers propose GraphODE models (Poli et al., 2019; Huang et al., 2020; Zang &
Wang, 2020; Luo et al., 2023; Wen et al., 2022) which describe multi-agent dynamical systems
by a series of ODEs in a continuous manner. Specifically, they employ GNN as the ODE func-
tion and learn it in a data-driven way, making GraphODEs flexible to model a wide range of real-
worldsystems (Chen et al., 2018; Rubanova et al., 2019). The state evolution can be described as:
żi(t) :=

dzi(t)
dt = g (z1(t), z2(t) · · · zN (t)), where zi(t) ∈ Rd denotes the latent state variable for

agent i at timestamp t and g denotes the message passing function that drives the system to move for-
ward. GraphODEs have been shown to achieve superior performance, especially in long-range pre-
dictions and can handle data irregularity issues. They usually follow an encoder-processor-decoder
architecture, where an encoder first computes the latent initial states z1(0), · · · zN (0) for all agents
simultaneously based on their historical observations as in Eqn 8.

z1(0), z2(0), ...,zN (0) = fENC
(
X(t1:K),G) (8)

Then the GNN-based ODE predicts the latent trajectories starting from the learned initial states.
Given the initial states z1(0), · · · zN (0) for all agents and the ODE, we can compute the latent state
zi(T ) at any desired time using a numerical ODE solver such as Runge-Kuttais (Schober et al.,
2019) as shown in Eqn 9.

zi(T ) = ODE-Solver
(
g, [z1(0), z2(0)...zN (0)], t = T )

)
= zi(0)+

∫ T

t=0

g (z1(t), z2(t) · · · zN (t)) dt

(9)

Finally, a decoder extracts the predicted dynamics ŷi(1), ŷi(2), ..., ŷi(T ) based on the trajectory of
latent states zi(1), zi(2), ...,zi(T ).

ŷi(t) = fDEC(zi(t)) (10)

In the following we introduce in details how we implement our model and each baseline.

A.2 Initial State Encoder

The initial state encoder computes the latent node initial states zi(t) for all agents simultaneously
considering their mutual interaction. Specifically, it first fuses all observations into a temporal

7Following (Kipf et al., 2018), we use “agents” to denote “objects” in dynamical systems, which is different
from “intelligent agent” in AI.
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graph and conducts dynamic node representation through a spatial-temporal GNN as in Huang et al.
(2020):

hl+1
j(t) = hl

j(t) + σ

 ∑
i(t′)∈Nj(t)

αl
i(t′)→j(t) ×Wvĥ

l−1
i(t′)


αl
i(t′)→j(t) =

(
Wkĥ

l−1
i(t′)

)T (
Wqh

l−1
j(t)

)
· 1√

d
, ĥl−1

i(t′) = hl−1
i(t′) + TE(t′ − t)

TE(∆t)2i = sin

(
∆t

100002i/d

)
, TE(∆t)2i+1 = cos

(
∆t

100002i/d

)
,

(11)

where || denotes concatenation; σ(·) is a non-linear activation function; d is the dimension of node
embeddings. The node representation is computed as a weighted summation over its neighbors
plus residual connection where the attention score is a transformer-based Vaswani et al. (2017) dot-
product of node representations by the use of value, key, query projection matrices Wv,Wk,Wq .
Here hl

j(t) is the representation of agent j at time t in the l-th layer. i(t′) is the general index for
neighbors connected by temporal edges (where t′ ̸= t) and spatial edges (where t = t′ and i ̸= j).
The temporal encoding Hu et al. (2020) is added to a neighborhood node representation in order
to distinguish its message delivered via spatial and temporal edges. Then, we stack L layers to get
the final representation for each observation node: ht

i = hL
i(t). Finally, we employ a self-attention

mechanism to generate the sequence representation ui for each agent as their latent initial states:

ui =
1

K

∑
t

σ
(
aT
i ĥ

t
iĥ

t
i

)
, ai = tanh

((
1

K

∑
t

ĥt
i

)
Wa

)
, (12)

where ai is the average of observation representations with a nonlinear transformation Wa and
ĥt
i = ht

i + TE(t). K is the number of observations for each trajectory. Compared with recurrent
models such as RNN, LSTM Sepp & Jürgen (1997), it offers better parallelization for accelerating
training speed and in the meanwhile alleviates the vanishing/exploding gradient problem brought by
long sequences.

Given the latent initial states, the dynamics of the whole system are determined by the ODE function
g which we parametrize as a GNN as in Huang et al. (2020) to capture the continuous interaction
among agents. We then employ Multilayer Perceptron (MLP) as a decoder to predict the trajectories
ŷi(t) from the latent states zi(t).

zi(t), zi(1), zi(2) · · · zi(T ) = ODEsolver(g, [z1(0), z2(0) · · · zN (0)], (t0, t1 · · · tT ))
ŷi(t) = fdec(zi(t))

(13)

B Theoretical Analysis

B.1 Lemma 1

Lemma 1. Eqn 2 is equivalent to R ◦ ϕt ◦R ◦ ϕt = I , where I denotes identity mapping.

Proof. The definition of time-reversal symmetry is given by:

R ◦ ϕt = ϕ−t ◦R = ϕ−1
t ◦R (14)

Here, R is an involution operator, which means R ◦R = id.

First, we apply the time evolution operator ϕt to both sides of Eqn. equation 14:

ϕt ◦R ◦ ϕt = ϕt ◦ ϕ−1
t ◦R (15)

Simplifying, we obtain:
ϕt ◦R ◦ ϕt = R (16)
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Next, we apply the involution operator R to both sides of the equation:

R ◦ ϕt ◦R ◦ ϕt = R ◦R (17)

Since R ◦R = I, we finally arrive at:

R ◦ ϕt ◦R ◦ ϕt = I (18)

which means the trajectories can overlap when evolving backward from the final state.

B.2 Proof of Theorem 1

Let ∆t denote the integration step size in an ODE solver and T be the prediction length. The time
stamps of the ODE solver are {tj}Tj=0, where tj+1 − tj = ∆t for j = 0, · · · , T (T > 1). Next
suppose during the forward evolution, the updates go through states zfwd(tj) = (qfwd(tj),p

fwd(tj))
for j = 0, · · · , T , where qfwd(tj) is position, pfwd(tj) is momentum, while during the reverse
evolution they go through states zrev(tj) = (qrev(tj),p

rev(tj)) for j = 0, · · · , T , in reverse order.
The ground truth trajectory is zgt(tj) = (qgt(tj),p

gt(tj)) for j = 0, · · · , T .

For the sake of brevity in the ensuing proof, we denote zgt(tj) by zgt
j , zfwd(tj) by zfwd

j and zrev(tj)
by zrev

j , and we will use Mathematical Induction to prove the theorem.

B.2.1 Reconstruction Loss (Lpred) Analysis.

First, we bound the forward loss
∑T

j=0 ∥zfwd
j −zgt

j ∥22. Since our method models the momentum and
position of the system, we can write the following Taylor expansion of the forward process, where
for any 0 ≤ j < T :

qfwd
j+1 = qfwd

j + (pfwd
j /m)∆t+ (ṗfwd

j /2m)∆t2 +O(∆t3), (19a)

pfwd
j+1 = pfwd

j + ṗfwd
j ∆t+O(∆t2), (19b)

ṗfwd
j+1 = ṗfwd

j +O(∆t), (19c)

and for the ground truth process, we also have from Taylor expansion that
qgt
j+1 = qgt

j + (pgt
j /m)∆t+ (ṗgt

j /2m)∆t2 +O(∆t3), (20a)

pgt
j+1 = pgt

j + ṗgt
j ∆t+O(∆t2), (20b)

ṗgt
j+1 = ṗgt

j +O(∆t). (20c)

With these, we aim to prove that for any k = 0, 1, · · · , T , the following hold :{
∥qfwd

k − qgt
k ∥2 ≤ C fwd

2 k2∆t2, (21a)

∥pfwd
k − pgt

k ∥2 ≤ C fwd
1 k∆t, (21b)

where C fwd
1 and C fwd

2 are constants.

Base Case k = 0: Based on the initialization rules, it is obvious that
∥∥qfwd

0 − qgt
0

∥∥
2
= 0 and∥∥pfwd

0 − pgt
0

∥∥
2
= 0, thus (21a) and (21b) both hold for k = 0.

Inductive Hypothesis: Assume (21a) and (21b) hold for k = j, which means:{
∥qfwd

j − qgt
j ∥2 ≤ C fwd

2 j2∆t2, (22a)

∥pfwd
j − pgt

j ∥2 ≤ C fwd
1 j∆t, (22b)

Inductive Proof: We need to prove (21a) and (21b) hold for k = j + 1.

First, using (19c) and (20c), we have∥∥ṗfwd
j+1 − ṗgt

j+1

∥∥
2
=
∥∥ṗfwd

j − ṗgt
j

∥∥
2
+O(∆t) =

∥∥ṗfwd
0 − ṗgt

0

∥∥
2
+O

(
(j + 1)∆t

)
= O(1), (23)
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where we iterate through j, j − 1, · · · , 0 in the second equality. Then using (20b) and (19b), we get
for j + 1 that ∥∥pfwd

j+1 − pgt
j+1

∥∥
2
=
∥∥(pfwd

j + ṗfwd
j ∆t

)
−
(
pgt
j + ṗgt

j ∆t
)
+O(∆t2)∥2

≤
∥∥pfwd

j − pgt
j

∥∥
2
+
∥∥ṗfwd

j − ṗgt
j

∥∥
2
∆t+O(∆t2)

≤
[
C fwd

1 j +O(1)
]
∆t,

where the first inequality uses the triangle inequality, and in the second inequality we use (22b) as
well as (23). We can see there exists C fwd

1 such that the final expression above is upper bounded by
C fwd

1 (j + 1)∆t, with which the claim holds for j + 1.

Next for (21a), using (20a) and (19a), we get for any j that∥∥qfwd
j+1 − qgt

j+1

∥∥
2
=
∥∥(qfwd

j + (pfwd
j /m)∆t+ (ṗfwd

j /2m)∆t2)

−
(
qgt
j + (pgt

j /m)∆t+ (ṗgt
j /2m)∆t2

)
+O(∆t3)∥2

≤
∥∥qfwd

j − qgt
j

∥∥
2
+

1

m

∥∥pfwd
j − pgt

j

∥∥
2
∆t+

1

2m

∥∥ṗfwd
j − ṗgt

j

∥∥
2
∆t2 +O(∆t3)

≤
[
C fwd

2 j2 +
C fwd

1

m
j +O(1)

]
∆t2,

where the first inequality uses the triangle inequality, and in the second inequality we use (22a) and
(22b) as well as (23). Thus with an appropriate C fwd

2 , we have the final expression above is upper
bounded by C fwd

2 (j + 1)2∆t2, and so the claim holds for j + 1.

Since both the base case and the inductive step have been proven, by the principle of mathematical
induction, (21a) and (21b) holds for all k = 0, 1, · · · , T .

With this, we finish the forward proof by plugging (21a) and (21b) into the loss function:

T∑
j=0

∥zfwd
j − zgt

j ∥
2
2 =

T∑
j=0

∥pfwd
j − pgt

j ∥
2
2 +

T∑
j=0

∥qfwd
j − qgt

j ∥
2
2

≤
(
C fwd

1

)2 T∑
j=0

j2∆t2 +
(
C fwd

2

)2 T∑
j=0

j4∆t4

= O(T 3∆t2).

B.2.2 Reversal Loss (Lreverse) Analysis.

Next we analyze the reversal loss
∑T

j=0 ∥R(zrev
j ) − zfwd

j ∥22. For this, we need to refine the Taylor
expansion residual terms for a more in-depth analysis.

First reconsider the forward process. Since the process is generated from the learned network, we
may assume that for some constants c1, c2, and c3, the states satisfy the following for any 0 ≤ j < T :


qfwd
j = qfwd

j+1 − (pfwd
j+1/m)∆t+ (ṗfwd

j+1/2m)∆t2 + remfwd,3
j , (24a)

pfwd
j = pfwd

j+1 − ṗfwd
j+1∆t+ remfwd,2

j , (24b)

ṗfwd
j = ṗfwd

j+1 + remfwd,1
j , (24c)

where the remaining terms
∥∥remfwd,i

j

∥∥
2
≤ ci∆ti for i = 1, 2, 3. Similarly, we have approximate

Taylor expansions for the reverse process:
qrev
j = qrev

j+1 + (prev
j+1/m)∆t+ (ṗrev

j+1/2m)∆t2 + remrev,3
j , (25a)

prev
j = prev

j+1 + ṗrev
j+1∆t+ remrev,2

j , (25b)

ṗrev
j = ṗrev

j+1 + remrev,1
j , (25c)

where
∥∥remrev,i

j

∥∥
2
≤ ci∆ti for i = 1, 2, 3.
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We will prove via induction that for k = T, T − 1, · · · , 0,
∥R(qrev

k )− qfwd
k ∥2 ≤ C rev

3 (T − k)3∆t3, (26a)

∥R(prev
k )− pfwd

k ∥2 ≤ C rev
2 (T − k)2∆t2, (26b)

∥R(ṗrev
k )− ṗfwd

k ∥2 ≤ C rev
1 (T − k)∆t, (26c)

where C rev
1 , C rev

2 and C rev
3 are constants.

The entire proof process is analogous to the previous analysis of Reconstruction Loss.

Base Case k = T : Since the reverse process is initialized by the forward process variables at k = T ,
it is obvious that

∥∥qfwd
T − qev

T

∥∥
2
=
∥∥pfwd

T − prev
T

∥∥
2
=
∥∥ṗfwd

T − ṗrev
T

∥∥
2
= 0. Thus (26a), (26b) and

(26c) all hold for k = 0.

Inductive Hypothesis: Assume the inequalities (26b), (26a) and (26c) hold for k = j + 1, which
means: 

∥R(qrev
j+1)− qfwd

j+1∥2 ≤ C rev
3 (T − (j + 1))3∆t3, (27a)

∥R(prev
j+1)− pfwd

j+1∥2 ≤ C rev
2 (T − (j + 1))2∆t2, (27b)

∥R(ṗrev
j+1)− ṗfwd

j+1∥2 ≤ C rev
1 (T − (j + 1))∆t, (27c)

Inductive Proof: We need to prove (26b) (26a) and (26c) holds for k = j.

First, for (26c), using (24c) and (25c), we get for any j that∥∥R(ṗrev
j )− ṗfwd

j

∥∥
2
=
∥∥(ṗrev

j+1 + remrev,1
j )− (ṗfwd

j+1 + remfwd,1
j )

∥∥
2

≤
∥∥R(ṗrev

j+1)− ṗfwd
j+1

∥∥
2
+ ∥remrev,1

j ∥2 + ∥remfwd,1
j ∥2

≤ C rev
1 (T − j − 1)∆t+ 2c1∆t,

where the first inequality uses the triangle inequality, and the second inequality plugs in (27c). Thus
taking C rev

1 = 2c1, the above is upped bounded by C rev
1 (T − j)∆t, and (26b) holds for j.

Second, for (27b), using (24b) and (25b), we get∥∥R(prev
j )− pfwd

j

∥∥
2
=
∥∥− (prev

j+1 + ṗrev
j+1∆t+ remrev,2

j

)
−
(
pfwd
j+1 − ṗfwd

j+1∆t+ remfwd,2
j

)
∥2

≤
∥∥R(prev

j+1)− pfwd
j+1

∥∥
2
+
∥∥R(ṗrev

j+1)− ṗfwd
j+1

∥∥
2
∆t

+ ∥remrev,2
j ∥2 + ∥remfwd,2

j ∥2
≤
[
C rev

2 (T − j − 1)2 + C rev
1 (T − j − 1) + 2c2

]
∆t2,

where the first inequality uses the triangle inequality, and in the second inequality we use (27a) and
(27b). Thus taking C rev

2 = max{C rev
1 /2, 2c2}, we have the final expression above is upper bounded

by C rev
2 (T − j)2∆t2, and so the claim holds for j.

Finally, for (27a), we use (24a) and (25a) to get∥∥R(qrev
j )− qfwd

j

∥∥
2
=
∥∥(qrev

j+1 + (prev
j+1/m)∆t+ (ṗrev

j+1/2m)∆t2 + remrev,3
j

)
−
(
qfwd
j+1 − (pfwd

j+1/m)∆t+ (ṗfwd
j+1/2m)∆t2 + remfwd,3

j

)
∥2

≤
∥∥R(qrev

j+1)− qfwd
j+1

∥∥
2
+

1

m

∥∥R(prev
j+1)− pfwd

j+1

∥∥
2
∆t

+
1

2m

∥∥R(ṗrev
j+1)− ṗfwd

j+1

∥∥
2
∆t2 + ∥remrev,3

j ∥2 + ∥remfwd,3
j ∥2

≤
[
C rev

3 (T − j − 1)3 +
C rev

2

m
(T − j − 1)2 +

C rev
1

2m
(T − j − 1) + 2c3

]
∆t3,

where the first inequality uses the triangle inequality, and in the second inequality we use (27a),
(27b) and (27c). Thus taking C rev

3 = max{C rev
2 /3m,C rev

1 /6m, 2c3}, we have the final expression
above is upper bounded by C rev

3 (T − j)3∆t3, and so the claim holds for j.

Since both the base case and the inductive step have been proven, by the principle of mathematical
induction, (26b), (26a) and (26c) hold for all k = T, T − 1, · · · , 0.
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With this we finish the proof by plugging (26b) and (26a) into the loss function:

T∑
j=0

∥R(zrev
j )− zfwd

j ∥22 =

T∑
j=0

∥R(prev
j )− pfwd

j ∥22 +
T∑

j=0

∥R(qrev
j )− qfwd

j ∥22

≤
(
C rev

2

)2 T∑
j=0

(T − j)4∆t4 +
(
C rev

3

)2 T∑
j=0

(T − j)6∆t6

= O(T 5∆t4).

B.3 Analysis on Implementations of Reversal Loss

Remark 1. We define the reversal loss Lreverse as the distance between model forward trajectories
and backward trajectories. There are other implementation choices. The first is to minimize the dis-
tances between model backward trajectories and ground truth trajectories. When both forward and
backward trajectories are close to ground-truth, they are implicitly symmetric. The major drawback
is that at the early stage of learning when the forward is far away from ground truth, such implicit
regularization does not force time-reversal symmetry, but introduce more noise.

Remark 2. The computational time of the reversal loss Lreverse is of the same scale as the forward
reconstruction loss Lpred. As the computation process of the reversal loss is to first use the ODE
solver to generate the reverse trajectories, which has the same computational overhead as computing
the forward trajectories, and then compute the L2 distances. The space complexity is only O(1) as
we are using the adjoint methods (Chen et al., 2018) to compute the reverse trajectories.

Remark 3. Comparing TANGO against the implementation following Eqn.(2), when the recon-
struction loss defined in Eqn.(4) and the time-reversal loss defined in Eqn. (6) of both methods are
equal, the maximum error between the reversal and ground truth trajectory, i.e. MaxErrorgt_rev =
maxj∈[T ] ∥y(j) − ŷrev(T − j)∥2 made by TANGO is smaller than that of following Eqn.(2).We
show the empirical comparison of them in Appendix D.5.

Figure 3: Comparison between two reversal loss implementation

This remark suggests that our implementation of time-reversal symmetry is numerically better than
the implementation used in (Huh et al., 2020). We give an illustration of the remark below.

We expect an ideal model to align both the predicted forward and reverse trajectories with the ground
truth. As shown in Figure 3, we integrate one step from the initial state ŷfwd(0) (which is the same
as y(0)) and reach the state ŷfwd(1).

The first reverse loss implementation (ours) follows lemma (1) as R ◦ Φt ◦ R ◦ Φt = id, which
means when we evolve forward and reach the state ŷfwd(1) we reverse it into ŷrev1(−1) and go back
to reach ŷrev1(0), then reverse it to get R(ŷrev1(0)), which ideally should be the same as ŷfwd(0).

The second reverse loss implementation follows Eqn.(2) as R◦Φt = Φ−t ◦R, which means we first
reverse the initial state as ŷrev2(0) = R(y(0)), then evolve the reverse trajectory in the opposite di-
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rection to reach ŷrev2(−1), and then perform a time-symmetric operation to reach ŷrev2(1), aligning
it with the forward trajectory.

We assume the two reconstruction losses Lpred = ∥ŷfwd(1) − y(1)∥22 := a are the same. For the
time-reversal losses:

Lreverse1 = ∥R(ŷrev1(0))− ŷfwd(0)∥22 + ∥R(ŷrev1(−1))− ŷfwd(1)∥22 = ∥R(ŷrev1(0))− ŷfwd(0)∥22 := b,

Lreverse2 = ∥ŷrev2(0)− ŷfwd(0)∥22 + ∥ŷrev2(1)− ŷfwd(1)∥22 = ∥ŷrev2(1)− ŷfwd(1)∥22 := b,

we also assume they have reached the same value b.

As shown in Figure.3 where we illustrate the worse case scenario MaxErrorgt_rev =
maxj∈[T ] ∥y(j)−ŷrev(T−j)∥2 of the two loss, we can see that in our implementation the worst error
is the maximum of two loss, while the TRS-ODEN’s implementation has the risk of accumulating
the error together, making the worst error being the sum of both:

MaxErrorgt_rev1 = max
{∥∥R(ŷrev1(0))− y(0)

∥∥
2
,
∥∥R(ŷrev1(−1))− y(1)

∥∥
2

}
= max

{
a, b
}
,

MaxErrorgt_rev2 =
∥∥ŷrev2(1)− ŷfwd(1)

∥∥
2
+
∥∥ŷfwd(1)− y(1)

∥∥
2
= a+ b,

This means our model achieves a smaller error of the maximum distance between the reversal and
ground truth trajectory.

C Example of varying dynamical systems

We illustrate the energy conservation and time reversal of the three n-body spring systems in Fig-
ure 1(a). We use the Hamiltonian formalism of systems under classical mechanics to describe their
dynamics and verify their energy conservation and time-reversibility characteristics.

The scalar function that describes a system’s motion is called the Hamiltonian, H, and is typically
equal to the total energy of the system, that is, the potential energy plus the kinetic energy (North,
2021). It describes the phase space equations of motion by following two first-order ODEs called
Hamilton’s equations:

dq

dt
=

∂H(q,p)

∂p
,
dp

dt
= −∂H(q,p)

∂q
, (28)

where q ∈ Rn,p ∈ Rn, and H : R2n 7→ R are positions, momenta, and Hamiltonian of the system.

Under this formalism, energy conservative is defined by dH/dt = 0, and the time-reversal symmetry
is defined by H(q, p, t) = H(q,−p,−t) (Lamb & Roberts, 1998).

C.1 Conservative and reversible systems.

A simple example is the isolated n-body spring system, which can be described by :
dqi

dt
=

pi

m
dpi

dt
=
∑
j∈Ni

−k(qi − qj),
(29)

where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a set of
momenta of each object, mi is mass of each object, k is spring constant.

The Hamilton’s equations are:
∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj),
(30)

Hence, we can obtain the Hamiltonian through the integration of the above equation.

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
, (31)
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Verify the systems’ energy conservation

dH
(
q,p)

dt
=

1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
= 0, (32)

So it is conservative.

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→
(q,−p,−t).

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
,

(33)

It is obvious H(q,p) = H(q,−p), so it is reversible

C.2 Non-conservative and reversible systems.

A simple example is a n-body spring system with periodical external force, which can be described
by:

dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)− k1 cosωt,
(34)

The Hamilton’s equations are:
∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj) + k1 cosωt,
(35)

Hence, we can obtain the Hamiltonian through the integration of the above equation:

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosωt, (36)

Verify the systems’ energy conservation

dH
(
q,p)

dt
=

1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
+

1

dt

( N∑
i=1

qi ∗ k1 cosωt
)

=0 +
1

dt

( N∑
i=1

qik1 cosωt
)

=
( N∑
i=1

−ωqik1 sinωt
)
̸= 0

(37)

So it is non-conservative.

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→
(q,−p,−t).

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosωt,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosω(−t),

(38)

It is obvious H(q,p, t) = H(q,−p, t), so it is reversible
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C.3 Non-conservative and irreversible systems.

A simple example is an n-body spring system with frictions proportional to its velocity,γ is the
coefficient of friction, which can be described by:

dqi

dt
=

pi

m
dpi

dt
= −k0qi − γ

pi

m

(39)

The Hamilton’s equations are:

∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj) + γ
pi

m

(40)

Hence, we can obtain the Hamiltonian through the integration of the above equation:

H(q,p) =
N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ t

0

pi
2

m
dt, (41)

Verify the systems’ energy conservation

dH
(
q,p)

dt

=
1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
+

1

dt

( N∑
i=1

γ

m

∫ t

0

pi
2

m
dt)

=0 +
1

dt

( N∑
i=1

γ

m

∫ t

0

pi
2

m
dt)

=
( N∑
i=1

γ

m

pi
2

m
) ̸= 0

(42)

So it is non-conservative.

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→
(q,−p,−t).

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ t

0

pi
2

m
dt,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ (−t)

0

pi
2

m
d(−t),

(43)

It is obvious H(q,p, t) ̸= H(q,−p, t), so it is irreversible

D Experiments

D.1 Dataset

In our experiments, all datasets are synthesized from ground-truth physical law via sumulation.
We generate four simulated datasets: three n-body spring systems under damping, periodic, or no
external force, and one chaotic tripe pendulum dataset with three sequentially connected stiff sticks
that form. We name the first three as Sipmle Spring, Forced Spring, and Damped Spring respectively.
All n-body spring systems contain 5 interacting balls, with varying connectivities. Each Pendulum
system contains 3 connected stiff sticks.
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For the n-body spring system, we randomly sample whether a pair of objects are connected, and
model their interaction via forces defined by Hooke’s law. In the Damped spring, the objects have
an additional friction force that is opposite to their moving direction and whose magnitude is pro-
portional to their speed. In the Forced spring, all objects have the same external force that changes
direction periodically. We show in Figure 1(a), the energy variation in both of the Damped spring
and Forced spring is significant.

For the chaotic triple Pendulum , the equations governing the motion are inherently nonlinear. Al-
though this system is deterministic, it is also highly sensitive to the initial condition and numerical
errors (Shinbrot et al., 1992; Awrejcewicz et al., 2008; Stachowiak & Okada, 2006). This prop-
erty is often referred to as the "butterfly effect", as depicted in Fig 4. Unlike for n-body spring
systems, where the forces and equations of motion can be easily articulated, for the Pendulum, the
explicit forces cannot be directly defined, and the motion of objects can only be described through
Lagrangian formulations North (2021), making the modeling highly complex and raising challenges
for accurate learning.
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Figure 4: Illustration to show the pendulum is highly-sensitive to initial states

We simulate the trajectories by using Euler’s method for n-body spring systems and using the 4th
order Runge-Kutta (RK4) method for the Pendulum. We integrate with a fixed step size and sub-
sample every 100 steps. For training, we use a total of 6000 forward steps. To generate irregularly
sampled partial observations, we follow Huang et al. (2020) and sample the number of observations
n from a uniform distribution U(40, 52) and draw the n observations uniformly for each object.
For testing, we additionally sample 40 observations following the same procedure from PDE steps
[6000, 12000], besides generating observations from steps [1, 6000]. The above sampling proce-
dure is conducted independently for each object. We generate 20k training samples and 5k testing
samples for each dataset. The features (position/velocity) are normalized to the maximum absolute
value of 1 across training and testing datasets.

In the following subsections, we show the dynamical equations of each dataset in detail.

D.1.1 spring

Simple spring. The dynamical equations of simple spring are as follows:

dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)
(44)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a
set of momenta of each object. We set the mass of each object m = 1, the spring constantk = 0.1.
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Damped spring. The dynamical equations of damped spring are as follows:
dqi

dt
=

pi

m
dpi

dt
=
∑
j∈Ni

−k(qi − qj)− γ
pi

m

(45)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object, p = (p1,p2, · · · ,pN) is a
set of momenta of each object, We set the mass of each object m = 1, the spring constantk = 0.1,
the coefficient of friction γ = 10.

Forced spring. The dynamical equations of forced spring system are as follows:
dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)− k1 cosωt,
(46)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a
set of momenta of each object. We set the mass of each object m = 1 , the spring constantk = 0.1,
the external strength k1 = 10 and the frequency of variation ω = 1

We simulate the positions and momentums of three spring systems by using Euler methods as fol-
lows:

qi(t+ 1) = qi(t) +
dqi

dt
∆t

pi(t+ 1) = pi(t) +
dpi

dt
∆t

(47)

where dqi

dt and dpi

dt were defined as above for each datasets, and ∆t = 0.001 is the integration steps.

D.1.2 chaotic pendulum

In this section, we demonstrate how to derive the dynamics equations for a chaotic triple pendulum
using the Lagrangian formalism.

The moment of inertia of each stick about the centroid is

I =
1

12
ml2 (48)

The position of the center of gravity of each stick is as follows:

x1 =
l

2
sin θ1, y1 = − l

2
cos θ1

x2 = l(sin θ1 +
1

2
sin θ2), y2 = −l(cos θ1 +

1

2
cos θ2)

x3 = l(sin θ1 + sin θ2 +
1

2
sin θ3), y3 = −l(cos θ1 + cos θ2 +

1

2
cos θ3)

(49)

The change in the center of gravity of each stick is:

ẋ1 =
l

2
cos θ1 · θ̇1, ẏ1 =

l

2
sin θ1 · θ̇1

ẋ2 = l(cos θ1 · θ̇1 +
1

2
cos θ2 · θ̇2), ẏ2 = l(sin θ1 · θ̇1 +

1

2
sin θ2 · θ̇2)

ẋ3 = l(cos θ1 · θ̇1 + cos θ2 · θ̇2 +
1

2
cos θ3 · θ̇3), ẏ3 = l(sin θ1 · θ̇1 + sin θ2 · θ̇2 +

1

2
sin θ3 · θ̇3)

(50)

The Lagrangian L of this triple pendulum system is:
L =T − V

=
1

2
m(ẋ1

2 + ẋ2
2 + ẋ3

2 + ẏ1
2 + ẏ2

2 + ẏ3
2) +

1

2
I(θ̇1

2
+ θ̇2

2
+ θ̇3

2
)−mg(y1 + y2 + y3)

=
1

6
ml(9θ̇2θ̇1l cos(θ1 − θ2) + 3θ̇3θ̇1l cos (θ1 − θ3) + 3θ̇2θ̇3l cos (θ2 − θ3) + 7θ̇21l + 4θ̇22l + θ̇23l

+ 15g cos (θ1) + 9g cos (θ2) + 3g cos (θ3))

(51)
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The Lagrangian equation is defined as follows:

d

dt

∂L
∂θ̇

− ∂L
∂θ

= 0 (52)

and we also have:
∂L
∂θ̇

=
∂T

∂θ̇
= p

ṗ =
d

dt

∂L
∂θ̇

=
∂L
∂θ

(53)

where p is the Angular Momentum.
We can list the equations for each of the three sticks separately:

p1 =
∂L
∂θ̇1

ṗ1 =
∂L
∂θ1

p2 =
∂L
∂θ̇2

ṗ2 =
∂L
∂θ2

p3 =
∂L
∂θ̇3

ṗ3 =
∂L
∂θ3

(54)

Finally, we have :

θ̇1 = 6(9p1 cos(2(θ2−θ3))+27p2 cos(θ1−θ2)−9p2 cos(θ1+θ2−2θ3)+21p3 cos(θ1−θ3)−27p3 cos(θ1−2θ2+θ3)−23p1)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

θ̇2 = 6(27p1 cos(θ1−θ2)−9p1 cos(θ1+θ2−2θ3)+9p2 cos(2(θ1−θ3))−27p3 cos(2θ1−θ2−θ3)+57p3 cos(θ2−θ3)−47p2)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

θ̇3 = 6(21p1 cos(θ1−θ3)−27p1 cos(θ1−2θ2+θ3)−27p2 cos(2θ1−θ2−θ3)+57p2 cos(θ2−θ3)+81p3 cos(2(θ1−θ2))−143p3)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

ṗ1 = − 1
2ml

(
3θ̇2θ̇1l sin (θ1 − θ2) + θ̇1θ̇3l sin (θ1 − θ3) + 5g sin (θ1)

)
ṗ1 = − 1

2ml
(
−3θ̇1θ̇2l sin (θ1 − θ2) + θ̇2θ̇3l sin (θ2 − θ3) + 3g sin (θ2)

)
ṗ1 = − 1

2ml
(
θ̇1θ̇3l sin (θ1 − θ3) + θ̇2θ̇3l sin (θ2 − θ3)− g sin (θ3)

)
(55)

We simulate the angular of the three sticks by using the Runge-Kutta 4th Order Method as follows:

∆θ1(t) = θ̇(t,θ(t)) ·∆t

∆θ2(t) = θ̇(t+
∆t

2
,θ(t) +

∆θ1(t)

2
) ·∆t

∆θ3(t) = θ̇(t+
∆t

2
,θ(t) +

∆θ2(t)

2
) ·∆t

∆θ4(t) = θ̇(t+∆t,θ(t) + ∆θ3(t)) ·∆t

∆θ(t) =
1

6
(∆θ1(t) + ∆θ2(t) + ∆θ3(t) + ∆θ4(t))

θ(t+ 1) = θ(t) + ∆θ(t)

(56)

where θ̇ was defined as above , and ∆t = 0.0001 is the integration steps.

D.2 Task Setup

We evaluate model performance by splitting the trajectories into two halves: [t1, tK ], [tK+1, tT ]
where timestamps can be irregular. We condition the first half of observations to make predictions
for the second half as in Rubanova et al. (2019). For training, we condition from [t1, t2] to predict tra-
jectories in [t2, t3], while in testing, we condition from [t1, t3] to predict longer trajectories in [t3, t4]
to test model’s extrapolation ability. We generate irregular-sampled trajectories for all datasets and
set the number of training samples to be 20,000 and testing samples to be 5,000 respectively. The
maximum trajectory prediction length is 60.
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D.3 Baselines

We compare TANGO against three baseline types: 1) pure data-driven approaches including LG-
ODE (Huang et al., 2020) and LatentODE (Rubanova et al., 2019), where the first one is a multi-
agent approach considering the interaction graph, and the second one is a single-agent approach that
predicts each trajectory independently; 2) energy-preserving HODEN (Greydanus et al., 2019); and
3) time-reversal TRS-ODEN (Huh et al., 2020).

The latter two are single-agent approaches and require initial states as given input. To handle missing
initial states in our dataset, we approximate the initial states for the two methods via linear spline
interpolation (Endre Süli, 2003). In addition, we substitute the ODE network in TRS-ODEN with
a GNN (Kipf et al., 2018) as TRS-ODENGNN, which serves as a new multi-agent approach, for fair
comparison. HODEN cannot be easily extended to the multi-agent setting as replacing the ODE
function with a GNN can violate the energy conservation property of the original HODEN.

Note that we compared with baselines that are continuous, as discrete methods such as RNN (Sepp
& Jürgen, 1997), NRI (Kipf et al., 2018) are not able to handle data irregularity (Huang et al., 2020).

Finally, we conduct two ablation by changing the implementation of Lreverse: 1) TANGOLrev=gt-rev
, which computes the reversal loss as the L2 distance between ground truth trajectories to model
backward trajectories as discussed in Remark 1 of Appendix B.3; 2) TANGOLrev=rev2, which im-
plements the reversal loss based on Eqn 2, similar as TRS-ODEN but calculate over latent z.

For all the baseline methods, we adopt hyper-parameter search over hidden dimension and learning
rate, and report the best results. Implementation details is elaborated in Appendix D.4.

D.4 Implementation Details

TANGO

Our implementation of TANGO follows GraphODE pipeline. We implement the initial state en-
coder using a 2-layer GNN with a hidden dimension of 64 across all datasets. We use ReLU for
nonlinear activation. For the sequence self-attention module, we set the output dimension to 128.
The encoder’s output dimension is set to 16, and we add 64 additional dimensions initialized with
all zeros to the latent states zi(t) to stabilize the training processes as in Huang et al. (2021). The
GNN ODE function is implemented with a single-layer GNN from Kipf et al. (2018) with hidden
dimension 128. To compute trajectories, we use the Runge-Kutta method from torchdiffeq python
package s(Chen et al., 2021) as the ODE solver and a one-layer MLP as the decoder.

We implement our model in pytorch. Encoder, generative model, and the decoder parameters are
jointly optimized with AdamW optimizer (Loshchilov & Hutter, 2019) using a learning rate of
0.0001 for spring datasets and 0.00001 for Pendulum. The batch size for all datasets is set to 512.

TANGOgt-rev and TANGOrev2 share the same architecture and hyparameters as TANGO, with dif-
ferent implementations of the loss function. In TANGOgt-rev, instead of comparing forward and
reverse trajectories, we look at the L2 distance between the ground truth and reverse trajectories
when computing the reversal loss.

For TANGOrev2, we implement the reversal loss following Huh et al. (2020) with one difference: we
do not apply the reverse operation to the momentum portion of the initial state to the ODE function.
This is because the initial hidden state is an output of the encoder that mixes position and momentum
information. Note that we also remove the additional dimensions to the latent state that TANGO has.

LatentODE

We implement the Latent ODE sequence to sequence model as specified in (Rubanova et al., 2019).
We use a 4-layer ODE function in the recognition ODE, and a 2-layer ODE function in the generative
ODE. The recognition and generative ODEs use Euler and Dopri5 as solvers (Chen et al., 2021),
respectively. The number of units per layer is 1000 in the ODE functions and 50 in GRU update
networks. The dimension of the recognition model is set to 100. The model is trained with a learning
rate of 0.001 with an exponential decay rate of 0.999 across different experiments. Note that since
latentODE is a single-agent model, we compute the trajectory of each object independently when
applying it to multi-agent systems.

HODEN
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Table 2: Results of varying observation ratios on MSE (10−2).

Dataset Simple Spring Forced Spring Damped Spring Pendulum
Observation Ratios 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4

LG-ODE 1.7054 1.6889 1.7554 2.0370 0.9305 1.0217 1.4314 1.7469
TANGO 1.1176 1.1429 1.3611 1.5109 0.6920 0.6964 1.2309 1.2110

(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum
Figure 5: Varying α values across datasets.

To adapt HODEN, which requires full initial states of all objects, to systems with partial observa-
tions, we compute each object’s initial state via linear spline interpolation if it is missing. Following
the setup in Huh et al. (2020), we have two 2-layer linear networks with Tanh activation in between
as ODE functions, in order to model both positions and momenta. Each network has a 1000-unit
layer followed by a single-unit layer. The model is trained with a learning rate of 0.00001 using a
cosine scheduler.

TRS-ODEN

Similar to HODEN, we compute each object’s initial state via linear spline interpolation if it is
missing. As in Huh et al. (2020), we use a 2-layer linear network with Tanh activation in between
as the ODE functions, and the Leapfrog method for solving ODEs. The network has 1000 hidden
units and is trained with a learning rate of 0.00001 using a cosine scheduler.

TRS-ODENGNN

For TRSODENGNN, we substitute the ODE function in TRS-ODEN with a GraphODE network.
The GraphODE generative model is implemented with a single-layer GNN with hidden dimension
128. As in HODEN and TRS-ODEN, we compute each object’s missing initial state via linear
spline interpolation and the Leapfrog method for solving ODE. For all datasets, we use 0.5 as the
coefficient for the reversal loss in Huh et al. (2020), and 0.0002 as the learning rate under cosine
scheduling.

LGODE

Our implementation follows Huang et al. (2020) except we remove the Variational Autoencoder
(VAE) from the initial state encoder. Instead of using the output from the encoder GNN as the mean
and std of the VAE, we directly use it as the latent initial state. We use the same architecture as in
TANGO and train the model using an AdamW optimizer with a learning rate of 0.0001 across all
datasets.

D.5 Ablation and Sensitivity Analysis

Ablation on implementation of Lreverse. From the last block of Table 1, we can clearly see
that our implementation of reversal loss Lreverse achieves the best performance compared with
gt-rev and TRS-ODEN’s implementation (rev2). We also analytically show that our reversal loss
implementation is expected to achieve a smaller error than the one in TRS-ODEN in Appendix B.3.

Evaluation across prediction lengths. We vary the maximum prediction lengths from 20 to 60
across models as shown in Figure 6. As the number of prediction step increases, TANGO keeps the
best prediction performance, while other baselines have significant error accumulations. Notably
for the chaotic pendulum dataset, which is highly nonlinear and has much more complex inter-agent
interactions, single-agent baselines (HODEN, TRS-ODEN) perform poorly even on short prediction
lengths. The performance gap between TANGO and baselines increases when making long-range
predictions, showing the superior ability of TANGO.

Evaluation across observation ratios. For LG-ODE and TANGO, the encoder computes the initial
states from observed trajectories. We randomly masked out 40% and 80% observations to study
models’ sensitivity towards data sparsity. As shown in Table 2, when changing the ratios from 80%
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(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

Figure 6: Varying prediction lengths across datasets (Pendulum MSE is in log values.).

Ground Truth TANGO LG-ODE EnergyHODEN

（c) Forced Spring

(a
)S
im
pl
e
Sp
rin
g

(b
)D
am
pe
d
Sp
rin
g

(c
)F
or
ce
d
Sp
rin
g

Figure 7: Trajectory and energy visualization (trajectory starts from light colors to dark colors.)

(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum
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Figure 8: Time-Reversal symmetry loss visualization across datasets.

to 40%, we observe that TANGO has a smaller performance drop compared with LG-ODE, espe-
cially on the more complex Pendulum dataset (LG-ODE decreases 22.04% while TANGO decreases
1.62%). This indicates that TANGO is less sensitive toward data sparsity.

Evaluation across different α. We then vary the values of α defined in Eqn 7, which balances the
prediction loss and the reversal loss. While prediction loss aims to match true trajectories, reversal
loss ensures time-reversal property with better numerical accuracy Figure 5 demonstrates optimal
α values being neither too high nor too low. When the weight α is too small, the model tends to
neglect the physical bias, reducing test performance; Conversely, very high weights can emphasize
reversibility at the cost of accuracy Nonetheless, across various α values, TANGO consistently
surpasses LG-ODE, showcasing its flexibility in modeling diverse dynamical systems.

D.6 Visualizations

Trajectory Visualizations. Model predictions and ground truth are visualized in Figure 7. As
HODEN is a single-agent baseline that individually forces every agent’s energy to be constant over
time which is not valid, the predicted trajectories is having the largest errors and systems’ total
energy is not conserved for all datasets. The purely data-driven LG-ODE exhibits unrealistic energy
patterns, as seen in the energy spikes in Simple Spring and Force Spring. In contrast, TANGO,
incorporating reversal loss, generates realistic energy trends, and consistently produces trajectories
closest to the ground truth, showing its superior performance.
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Reversal Loss Visualizations. To further illustrate the issue of energy explosion from LG-ODE
that is purely data-driven, we visualize the reversal loss over training epochs from LG-ODE8 and
TANGO in Figure 8. As results suggest, LG-ODE is having increased reversal loss over training
epochs, meaning it is violating the time-reversal symmetry sharply, as contrast to TANGO which
has decrease reversal loss over epochs.

8There is no reversal loss backpropagation in LG-ODE, we just compute its value along training.
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